Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joong Hwan Bahng is active.

Publication


Featured researches published by Joong Hwan Bahng.


ACS Nano | 2011

Silver nanowire embedded in P3HT: PCBM for high efficiency hybrid photovoltaic device applications

Chul Hyun Kim; Sang Ho Cha; Sung Chul Kim; Myungkwan Song; Jaebeom Lee; Won Suk Shin; Sang Jin Moon; Joong Hwan Bahng; Nicholas A. Kotov; Sung Ho Jin

A systematic approach has been followed in the development of a high-efficiency hybrid photovoltaic device that has a combination of poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61-butyric acid methyl ester (PCBM), and silver nanowires (Ag NWs) in the active layer using the bulk heterojunction concept. The active layer is modified by utilizing a binary solvent system for blending. In addition, the solvent evaporation process after spin-coating is changed and an Ag NWs is incorporated to improve the performance of the hybrid photovoltaic device. Hybrid photovoltaic devices were fabricated by using a 1:0.7 weight ratio of P3HT to PCBM in a 1:1 weight ratio of o-dichlorobenzene and chloroform solvent mixture, in the presence and absence of 20 wt % of Ag NWs. We also compared the photovoltaic performance of Ag NWs embedded in P3HT:PCBM to that of silver nanoparticles (Ag NPs). Atomic force microscopy, scanning electron microscopy, transmittance electron microscopy, UV-visible absorption, incident photon-to-current conversion efficiency, and time-of-flight measurements are performed in order to characterize the hybrid photovoltaic devices. The optimal hybrid photovoltaic device composed of Ag NWs generated in this effort exhibits a power conversion efficiency of 3.91%, measured by using an AM 1.5G solar simulator at 100 mW/cm(2) light illumination intensity.


Experimental Hematology | 2009

Prolonged continuous in vitro human platelet production using three-dimensional scaffolds

Brent Sullenbarger; Joong Hwan Bahng; Ryan Gruner; Nicholas A. Kotov; Larry C. Lasky

OBJECTIVE Methods producing human platelets using growth on plastic, on feeder layers, or in suspension have been described. We hypothesized that growth of hematopoietic progenitors in a three-dimensional (3D) scaffold would enhance platelet production sans feeder layer. MATERIALS AND METHODS We grew CD34 positively selected human cord blood cells in surgical-grade woven polyester fabric or purpose-built hydrogel scaffolds using a cocktail of cytokines. RESULTS We found production of functional platelets over 10 days with two-dimensional (2D), 24 days with 3D scaffolds in wells, and more than 32 days in a single-pass 3D perfusion bioreactor system. Platelet numbers produced daily were higher in 3D than 2D, and much higher in the 3D perfusion bioreactor system. Platelet output increased in hydrogel scaffolds coated with thrombopoietin and/or fibronectin, although this effect was largely obviated with markedly increased production caused by changes in added cytokines. In response to thrombin, the platelets produced aggregated and displayed increased surface CD62 and CD63. CONCLUSION Use of 3D scaffolds, especially in a bioreactor-maintained milieu, may allow construction of devices for clinical platelet production without cellular feeder layers.


Nature Communications | 2014

Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles

Park Ji; Trung Dac Nguyen; de Queirós Silveira G; Joong Hwan Bahng; Sudhanshu Srivastava; G Zhao; Kai Sun; Peijun Zhang; Sharon C. Glotzer; Nicholas A. Kotov

Self-assembly of proteins and inorganic nanoparticles into terminal assemblies makes possible a large family of uniformly sized hybrid colloids. These particles can be compared in terms of utility, versatility and multifunctionality to other known types of terminal assemblies. They are simple to make and offer theoretical tools for designing their structure and function. To demonstrate such assemblies, we combine cadmium telluride nanoparticles with cytochrome C protein and observe spontaneous formation of spherical supraparticles with a narrow size distribution. Such self-limiting behaviour originates from the competition between electrostatic repulsion and non-covalent attractive interactions. Experimental variation of supraparticle diameters for several assembly conditions matches predictions obtained in simulations. Similar to micelles, supraparticles can incorporate other biological components as exemplified by incorporation of nitrate reductase. Tight packing of nanoscale components enables effective charge and exciton transport in supraparticles and bionic combination of properties as demonstrated by enzymatic nitrate reduction initiated by light absorption in the nanoparticle.


Nature | 2015

Anomalous dispersions of 'hedgehog' particles.

Joong Hwan Bahng; Bongjun Yeom; Yichun Wang; Siu on Tung; J. Damon Hoff; Nicholas A. Kotov

Hydrophobic particles in water and hydrophilic particles in oil aggregate, but can form colloidal dispersions if their surfaces are chemically camouflaged with surfactants, organic tethers, adsorbed polymers or other particles that impart affinity for the solvent and increase interparticle repulsion. A different strategy for modulating the interaction between a solid and a liquid uses surface corrugation, which gives rise to unique wetting behaviour. Here we show that this topographical effect can also be used to disperse particles in a wide range of solvents without recourse to chemicals to camouflage the particles’ surfaces: we produce micrometre-sized particles that are coated with stiff, nanoscale spikes and exhibit long-term colloidal stability in both hydrophilic and hydrophobic media. We find that these ‘hedgehog’ particles do not interpenetrate each other with their spikes, which markedly decreases the contact area between the particles and, therefore, the attractive forces between them. The trapping of air in aqueous dispersions, solvent autoionization at highly developed interfaces, and long-range electrostatic repulsion in organic media also contribute to the colloidal stability of our particles. The unusual dispersion behaviour of our hedgehog particles, overturning the notion that like dissolves like, might help to mitigate adverse environmental effects of the use of surfactants and volatile organic solvents, and deepens our understanding of interparticle interactions and nanoscale colloidal chemistry.


Nano Letters | 2014

Self-Organization of Plasmonic and Excitonic Nanoparticles into Resonant Chiral Supraparticle Assemblies

Tao Hu; Benjamin P. Isaacoff; Joong Hwan Bahng; Changlong Hao; Yunlong Zhou; Jian Zhu; Xinyu Li; Zhenlong Wang; Shaoqin Liu; Chuanlai Xu; Julie S. Biteen; Nicholas A. Kotov

Chiral nanostructures exhibit strong coupling to the spin angular momentum of incident photons. The integration of metal nanostructures with semiconductor nanoparticles (NPs) to form hybrid plasmon-exciton nanoscale assemblies can potentially lead to plasmon-induced optical activity and unusual chiroptical properties of plasmon-exciton states. Here we investigate such effects in supraparticles (SPs) spontaneously formed from gold nanorods (NRs) and chiral CdTe NPs. The geometry of this new type of self-limited nanoscale superstructures depends on the molar ratio between NRs and NPs. NR dimers surrounded by CdTe NPs were obtained for the ratio NR/NP = 1:15, whereas increasing the NP content to a ratio of NR/NP = 1:180 leads to single NRs in a shell of NPs. The SPs based on NR dimers exhibit strong optical rotatory activity associated in large part with their twisted scissor-like geometry. The preference for a specific nanoscale enantiomer is attributed to the chiral interactions between CdTe NP in the shell. The SPs based on single NRs also yield surprising chiroptical activity at the frequency of the longitudinal mode of NRs. Numerical simulations reveal that the origin of this chiroptical band is the cross talk between the longitudinal and the transverse plasmon modes, which makes both of them coupled with the NP excitonic state. The chiral SP NR-NP assemblies combine the optical properties of excitons and plasmons that are essential for chiral sensing, chiroptical memory, and chiral catalysis.


Nature Chemistry | 2017

Self-assembly of nanoparticles into biomimetic capsid-like nanoshells

Ming Yang; Henry Chan; Gongpu Zhao; Joong Hwan Bahng; Peijun Zhang; Petr Král; Nicholas A. Kotov

Nanoscale compartments are one of the foundational elements of living systems. Capsids, carboxysomes, exosomes, vacuoles and other nanoshells easily self-assemble from biomolecules such as lipids or proteins, but not from inorganic nanomaterials because of difficulties with the replication of spherical tiling. Here we show that stabilizer-free polydispersed inorganic nanoparticles (NPs) can spontaneously organize into porous nanoshells. The association of water-soluble CdS NPs into self-limited spherical capsules is the result of scale-modified electrostatic, dispersion and other colloidal forces. They cannot be accurately described by the Derjaguin-Landau-Vervey-Overbeek theory, whereas molecular-dynamics simulations with combined atomistic and coarse-grained description of NPs reveal the emergence of nanoshells and some of their stabilization mechanisms. Morphology of the simulated assemblies formed under different conditions matched nearly perfectly the transmission electron microscopy tomography data. This study bridges the gap between biological and inorganic self-assembling nanosystems and conceptualizes a new pathway to spontaneous compartmentalization for a wide range of inorganic NPs including those existing on prebiotic Earth.


ACS Nano | 2015

Anomalously Fast Diffusion of Targeted Carbon Nanotubes in Cellular Spheroids.

Yichun Wang; Joong Hwan Bahng; Quantong Che; Jishu Han; Nicholas A. Kotov

Understanding transport of carbon nanotubes (CNTs) and other nanocarriers within tissues is essential for biomedical imaging and drug delivery using these carriers. Compared to traditional cell cultures in animal studies, three-dimensional tissue replicas approach the complexity of the actual organs and enable high temporal and spatial resolution of the carrier permeation. We investigated diffusional transport of CNTs in highly uniform spheroids of hepatocellular carcinoma and found that apparent diffusion coefficients of CNTs in these tissue replicas are anomalously high and comparable to diffusion rates of similarly charged molecules with molecular weights 10000× lower. Moreover, diffusivity of CNTs in tissues is enhanced after functionalization with transforming growth factor β1. This unexpected trend contradicts predictions of the Stokes-Einstein equation and previously obtained empirical dependences of diffusivity on molecular mass for permeants in gas, liquid, solid or gel. It is attributed to the planar diffusion (gliding) of CNTs along cellular membranes reducing effective dimensionality of diffusional space. These findings indicate that nanotubes and potentially similar nanostructures are capable of fast and deep permeation into the tissue, which is often difficult to realize with anticancer agents.


Small | 2013

Replication of Bone Marrow Differentiation Niche: Comparative Evaluation of Different Three-Dimensional Matrices

Meghan J. Cuddihy; Yichun Wang; Charles Machi; Joong Hwan Bahng; Nicholas A. Kotov

The comparative evaluation of different 3D matrices-Matrigel, Puramatrix, and inverted colloidal crystal (ICC) scaffolds-provides a perspective for studying the pathology and potential cures for many blood and bone marrow diseases, and further proves the significance of 3D cultures with direct cell-cell contacts for in vitro mimicry of the human stem cell niche.


Nanomedicine: Nanotechnology, Biology and Medicine | 2016

Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth

Matthew J. McGuffie; Jin Hong; Joong Hwan Bahng; Emmanouil Glynos; Peter F. Green; Nicholas A. Kotov; John G. Younger; J. Scott VanEpps

Despite a decade of engineering and process improvements, bacterial infection remains the primary threat to implanted medical devices. Zinc oxide nanoparticles (ZnO-NPs) have demonstrated antimicrobial properties. Their microbial selectivity, stability, ease of production, and low cost make them attractive alternatives to silver NPs or antimicrobial peptides. Here we sought to (1) determine the relative efficacy of ZnO-NPs on planktonic growth of medically relevant pathogens; (2) establish the role of bacterial surface chemistry on ZnO-NP effectiveness; (3) evaluate NP shape as a factor in the dose-response; and (4) evaluate layer-by-layer (LBL) ZnO-NP surface coatings on biofilm growth. ZnO-NPs inhibited bacterial growth in a shape-dependent manner not previously seen or predicted. Pyramid shaped particles were the most effective and contrary to previous work, larger particles were more effective than smaller particles. Differential susceptibility of pathogens may be related to their surface hydrophobicity. LBL ZnO-NO coatings reduced staphylococcal biofilm burden by >95%. From the Clinical Editor: The use of medical implants is widespread. However, bacterial colonization remains a major concern. In this article, the authors investigated the use of zinc oxide nanoparticles (ZnO-NPs) to prevent bacterial infection. They showed in their experiments that ZnO-NPs significantly inhibited bacterial growth. This work may present a new alternative in using ZnO-NPs in medical devices.


Journal of the American Chemical Society | 2011

Spontaneous self-organization enables dielectrophoresis of small nanoparticles and formation of photoconductive microbridges

Seung Ho Jung; Chen Chen; Sang Ho Cha; Bongjun Yeom; Joong Hwan Bahng; Sudhanshu Srivastava; Jian Zhu; Ming Yang; Shaoqin Liu; Nicholas A. Kotov

Detailed understanding of the mechanism of dielectrophoresis (DEP) and the drastic improvement of its efficiency for small size-quantized nanoparticles (NPs) open the door for the convergence of microscale and nanoscale technologies. It is hindered, however, by the severe reduction of DEP force in particles with volumes below a few hundred cubic nanometers. We report here DEP assembly of size-quantized CdTe nanoparticles (NPs) with a diameter of 4.2 nm under AC voltage of 4-10 V. Calculations of the nominal DEP force for these NPs indicate that it is several orders of magnitude smaller than the force of the Brownian motion destroying the assemblies even for the maximum applied AC voltage. Despite this, very efficient formation of NP bridges between electrodes separated by a gap of 2 μm was observed even for AC voltages of 6 V and highly diluted NP dispersions. The resolution of this conundrum was found in the intrinsic ability of CdTe NPs to self-assemble. The species being assembled by DEP are substantially bigger than the individual NPs. DEP assembly should be treated as a process taking place for NP chains with a length of ~140 nm. The self-assembled chains increase the nominal volume where the polarization of the particles takes place, while retaining the size-quantized nature of the material. The produced NP bridges were found to be photoactive, producing photocurrent upon illumination. DEP bridges of quantum confined NPs can be used in fast parallel manufacturing of novel MEMS components, sensors, and optical and optoelectronic devices. Purposeful engineering of self-assembling properties of NPs makes possible further facilitation of the DEP and increase of complexity of the produced nano- and microscale structures.

Collaboration


Dive into the Joong Hwan Bahng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yichun Wang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Zhu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Ming Yang

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Peijun Zhang

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge