Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joong-Youn Shim is active.

Publication


Featured researches published by Joong-Youn Shim.


The Journal of Steroid Biochemistry and Molecular Biology | 2007

Characterization of the estrogenic activities of zearalenone and zeranol in vivo and in vitro.

Hitomi Takemura; Joong-Youn Shim; Kazutoshi Sayama; Airo Tsubura; Bao Ting Zhu; Kayoko Shimoi

In the present study, we compared the estrogenic activity of zearalenone (ZEN) and zeranol (ZOL) by determining their relative receptor binding affinities for human ERalpha and ERbeta and also by determining their uterotropic activity in ovariectomized female mice. ZOL displayed a much higher binding affinity for human ERalpha and ERbeta than ZEN did. The IC(50) values of ZEN and ZOL for binding to human ERalpha were 240.4 and 21.79nM, respectively, and the IC(50) values for binding to ERbeta were 165.7 and 42.76nM, respectively. In ovariectomized female ICR mice, s.c. administration of ZEN at doses >or=2mg/kg/day for 3 consecutive days significantly increased uterine wet weight compared with the control group, and administration of ZOL increased the uterine wet weight at lower doses (>or=0.5mg/kg/day for 3 days). Based on available X-ray crystal structures of human ERalpha and ERbeta, we have also conducted molecular modeling studies to probe the binding characteristics of ZEN and ZOL for human ERalpha and ERbeta. Our data revealed that ZEN and ZOL were able to occupy the active site of the human ERalpha and ERbeta in a strikingly similar manner as 17beta-estradiol, such that the phenolic rings of ZEN and ZOL occupied the same receptor region as occupied by the A-ring of 17beta-estradiol. The primary reason that ZOL and ZEN is less potent than 17beta-estradiol is likely because 17beta-estradiol could bind to the receptor pocket without significantly changing its conformation, while ZOL or ZEN would require considerable conformational alterations upon binding to the estrogen receptors (ERs).


Chemistry and Physics of Lipids | 2002

CB1 cannabinoid receptor-G protein association: a possible mechanism for differential signaling

Somnath Mukhopadhyay; Joong-Youn Shim; Abdel-Azim Assi; Derek C. Norford; Allyn C. Howlett

Effects of cannabinoid compounds on neurons are predominantly mediated by the CB(1) cannabinoid receptor. Onset of signaling cascades in response to cannabimimetic drugs is triggered by the interaction of the cannabinoid receptor with G(i/o) proteins. Much work has been done to delineate the cannabinoid agonist-induced downstream signaling events; however, it remains to define the molecular basis of cannabinoid receptor-G protein interactions that stimulate these signaling pathways. In this review, we discuss several signal transduction pathways, focusing on studies that demonstrate the efficacy of CB(1) receptor agonists through G protein mediated pathways.


Journal of Biological Chemistry | 2013

Distinct Roles of β-Arrestin 1 and β-Arrestin 2 in ORG27569-induced Biased Signaling and Internalization of the Cannabinoid Receptor 1 (CB1)

Kwang H. Ahn; Mariam M. Mahmoud; Joong-Youn Shim; Debra A. Kendall

Background: CB1 is activated by agonist CP55940 in a G protein-dependent manner. Results: β-Arrestin 2 plays a role in CB1 internalization, whereas β-arrestin 1 is critical for ORG27569-induced ERK1/2, MEK1/2, and c-Src phosphorylation. Conclusion: Allosteric modulator ORG27569 endows CB1 with downstream signaling selectivity. Significance: This work discusses the first case of β-arrestin involvement in CB1-biased signaling. The cannabinoid receptor 1 (CB1) is a G protein-coupled receptor primarily expressed in brain tissue that has been implicated in several disease states. CB1 allosteric compounds, such as ORG27569, offer enormous potential as drugs over orthosteric ligands, but their mechanistic, structural, and downstream effects upon receptor binding have not been established. Previously, we showed that ORG27569 enhances agonist binding affinity to CB1 but inhibits G protein-dependent agonist signaling efficacy in HEK293 cells and rat brain expressing the CB1 receptor (Ahn, K. H., Mahmoud, M. M., and Kendall, D. A. (2012) J. Biol. Chem. 287, 12070–12082). Here, we identify the mediators of CB1 receptor internalization and ORG27569-induced G protein-independent signaling. Using siRNA technology, we elucidate an ORG27569-induced signaling mechanism for CB1 wherein β-arrestin 1 mediates short term signaling to ERK1/2 with a peak at 5 min and other upstream kinase components including MEK1/2 and c-Src. Consistent with these findings, we demonstrate co-localization of CB1-GFP with red fluorescent protein-β-arrestin 1 upon ORG27569 treatment using confocal microscopy. In contrast, we show the critical role of β-arrestin 2 in CB1 receptor internalization upon treatment with CP55940 (agonist) or treatment with ORG27569. These results demonstrate for the first time the involvement of β-arrestin in CB1-biased signaling by a CB1 allosteric modulator and also define the differential role of the two β-arrestin isoforms in CB1 signaling and internalization.


Xenobiotica | 2008

Molecular modelling study of the mechanism of high-potency inhibition of human catechol-O-methyltransferase by (–)-epigallocatechin-3-O-gallate

Bao Ting Zhu; Joong-Youn Shim; Mime Nagai; Hyoung-Woo Bai

The molecular mechanism of inhibition of human catechol-O-methyltransferase (COMT) by (–)-epigallocatechin-3-O-gallate (EGCG), which is a modest substrate of COMT but an ultra-potent inhibitor of this enzyme, was studied. EGCG has an IC50 value of 70 nM for inhibiting human liver COMT-mediated O-methylation of 2-hydroxyestradiol, which was 210–760 times more potent than catechin, epigallocatechin and epicatechin. Kinetic analyses showed that EGCG had a strong component of non-competitive inhibition of the O-methylation of 2-hydroxyestradiol. Computational molecular modelling studies showed that the B- and D-rings of EGCG can bind tightly to the human COMT in four different modes (i.e. D-para-OH, D-meta-OH, B-para-OH, and B-meta-OH). The binding geometry of EGCG in these binding modes was found to be less than ideal to form perfect Mg2+ coordination for the catalysis of its own methylation. It is concluded that the very tight binding interaction of EGCG with COMT makes it a potent non-competitive inhibitor, but its imperfect geometry makes it a poor substrate for methylation by this enzyme.


Biophysical Journal | 2009

Transmembrane Helical Domain of the Cannabinoid CB1 Receptor

Joong-Youn Shim

Brain cannabinoid (CB(1)) receptors are G-protein coupled receptors and belong to the rhodopsin-like subfamily. A homology model of the inactive state of the CB(1) receptor was constructed using the x-ray structure of beta(2)-adrenergic receptor (beta(2)AR) as the template. We used 105 ns duration molecular-dynamics simulations of the CB(1) receptor embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer to gain some insight into the structure and function of the CB(1) receptor. As judged from the root mean-square deviations combined with the detailed structural analyses, the helical bundle of the CB(1) receptor appears to be fully converged in 50 ns of the simulation. The results reveal that the helical bundle structure of the CB(1) receptor maintains a topology quite similar to the x-ray structures of G-protein coupled receptors overall. It is also revealed that the CB(1) receptor is stabilized by the formation of extensive, water-mediated H-bond networks, aromatic stacking interactions, and receptor-lipid interactions within the helical core region. It is likely that these interactions, which are often specific to functional motifs, including the S(N)LAxAD, D(E)RY, CWxP, and NPxxY motifs, are the molecular constraints imposed on the inactive state of the CB(1) receptor. It appears that disruption of these specific interactions is necessary to release the molecular constraints to achieve a conformational change of the receptor suitable for G-protein activation.


Nutrition and Cancer | 2012

Chemoprevention of 7,12-dimethylbenz[a]anthracene (DMBA)-induced Hamster Cheek Pouch Carcinogenesis by a 5-Lipoxygenase Inhibitor, Garcinol

Xin Chen; Xinyan Zhang; Ye Lu; Joong-Youn Shim; Shengmin Sang; Zheng Sun; Xiaoxin Chen

Our previous studies have shown that aberrant arachidonic acid metabolism, especially the 5-lipoxygenase (5-Lox) pathway, is involved in oral carcinogenesis and can be targeted for cancer prevention. To develop potent topical agents for oral cancer chemoprevention, 5 known 5-Lox inhibitors from dietary and synthetic sources (Zileuton, ABT-761, licofelone, curcumin, and garcinol) were evaluated in silico for their potential efficacy. Garcinol, a polyisoprenylated benzophenone from the fruit rind of Garcinia spp., was found to be a promising agent based on the calculation of a theoretical activity index. Computer modeling showed that garcinol well fit the active site of 5-Lox, and potentially inhibited enzyme activity through interactions between the phenolic hydroxyl groups and the non-heme catalytic iron. In a short-term study on 7,12-dimethylbenz[a]anthracene (DMBA)-treated hamster cheek pouch, topical garcinol suppressed leukotriene B4 (LTB4) biosynthesis and inhibited inflammation and cell proliferation in the oral epithelium. In a long-term carcinogenesis study, topical garcinol significantly reduced the size of visible tumors, the number of cancer lesions, cell proliferation, and LTB4 biosynthesis. These results demonstrated that topical application of a 5-Lox inhibitor, garcinol, had chemopreventive effect on DMBA-induced hamster cheek pouch carcinogenesis.


Journal of Biological Chemistry | 2013

Molecular Basis of Cannabinoid CB1 Receptor Coupling to the G Protein Heterotrimer Gαiβγ IDENTIFICATION OF KEY CB1 CONTACTS WITH THE C-TERMINAL HELIX α5 OF Gαi

Joong-Youn Shim; Kwang H. Ahn; Debra A. Kendall

Background: The molecular basis of CB1 coupling to its cognate G protein is unknown. Results: Using an approach combining mutagenesis and molecular dynamics simulations, we identified CB1 residues critical for G protein signaling. Conclusion: Tight interactions between CB1 and the C-terminal helix α5 of Gαi are crucial for G protein signaling. Significance: This is the first reported molecular description of CB1 receptor coupling at the receptor-Gi interface. The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-2183.54, Tyr-224IC2, Asp-3386.30, Arg-3406.32, Leu-3416.33, and Thr-3446.36, as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.


Journal of Biological Chemistry | 2011

Identification of Essential Cannabinoid-binding Domains: STRUCTURAL INSIGHTS INTO EARLY DYNAMIC EVENTS IN RECEPTOR ACTIVATION*

Joong-Youn Shim; Alexander C. Bertalovitz; Debra A. Kendall

The classical cannabinoid agonist HU210, a structural analog of (−)-Δ9-tetrahydrocannabinol, binds to brain cannabinoid (CB1) receptors and activates signal transduction pathways. To date, an exact molecular description of the CB1 receptor is not yet available. Utilizing the minor binding pocket of the CB1 receptor as the primary ligand interaction site, we explored HU210 binding using lipid bilayer molecular dynamics (MD) simulations. Among the potential ligand contact residues, we identified residues Phe-1742.61, Phe-1772.64, Leu-1933.29, and Met-3636.55 as being critical for HU210 binding by mutational analysis. Using these residues to guide the simulations, we determined essential cannabinoid-binding domains in the CB1 receptor, including the highly sought after hydrophobic pocket important for the binding of the C3 alkyl chain of classical and nonclassical cannabinoids. Analyzing the simulations of the HU210-CB1 receptor complex, the CP55940-CB1 receptor complex, and the (−)-Δ9-tetrahydrocannabinol-CB1 receptor complex, we found that the positioning of the C3 alkyl chain and the aromatic stacking between Trp-3566.48 and Trp-2795.43 is crucial for the Trp-3566.48 rotamer change toward receptor activation through the rigid-body movement of H6. The functional data for the mutant receptors demonstrated reductions in potency for G protein activation similar to the reductions seen in ligand binding affinity for HU210.


Journal of Biological Chemistry | 2012

Probing the Interaction of SR141716A with the CB1 Receptor

Joong-Youn Shim; Alexander C. Bertalovitz; Debra A. Kendall

Background: SR141716A binds the CB1 receptor selectively and exerts inverse agonist activity. Results: We identify a key role of the minor binding pocket for SR141716A binding. Conclusion: SR141716A exerts inverse agonist activity by securing the Trp rotameric switch, restraining CB1 from activation. Significance: This is the first reported molecular description of the superimposition of SR141716A- and CP55940-binding sites. SR141716A binds selectively to the brain cannabinoid (CB1) receptor and exhibits a potent inverse agonist/antagonist activity. Although SR141716A, also known as rimonabant, has been withdrawn from the market due to severe side effects, there remains interest in some of its many potential medical applications. Consequently, it is imperative to understand the mechanism by which SR141716A exerts its inverse agonist activity. As a result of using an approach combining mutagenesis and molecular dynamics simulations, we determined the binding mode of SR141716A. We found from the simulation of the CB1-SR141716A complex that SR141716A projects toward TM5 to interact tightly with the major binding pocket, replacing the coordinated water molecules, and secures the Trp-3566.48 rotameric switch in the inactive state to promote the formation of an extensive water-mediated H-bonding network to the highly conserved SLAXAD and NPXXY motifs in TM2/TM7. We identify for the first time the involvement of the minor binding pocket formed by TM2/TM3/TM7 for SR141716A binding, which complements the major binding pocket formed by TM3/TM5/TM6. Simulation of the F1742.61A mutant CB1-SR141716A complex demonstrates the perturbation of TM2 that attenuates SR141716A binding indirectly. These results suggest SR141716A exerts inverse agonist activity through the stabilization of both TM2 and TM5, securing the Trp-3566.48 rotameric switch and restraining it from activation.


Journal of Molecular Signaling | 2008

Binding mode prediction of conformationally restricted anandamide analogs within the CB 1 receptor

Lea W. Padgett; Allyn C. Howlett; Joong-Youn Shim

Background CB1 cannabinoid receptors are G-protein coupled receptors for endocannabinoids including anandamide and 2-arachidonoylglycerol. Because these arachidonic acid metabolites possess a 20-carbon polyene chain as the alkyl terminal moiety, they are highly flexible with the potential to adopt multiple biologically relevant conformations, particularly those in a bent form. To better understand the molecular interactions associated with binding and steric trigger mechanisms of receptor activation, a series of conformationally-restricted anandamide analogs having a wide range of affinity and efficacy were evaluated. Results A CB1 receptor model was constructed to include the extracellular loops, particularly extracellular loop 2 which possesses an internal disulfide linkage. Using both Glide (Schrödinger) and Affinity (Accelrys) docking programs, binding conformations of six anandamide analogs were identified that conform to rules applicable to the potent, efficacious and stereoselective non-classical cannabinoid CP55244. Calculated binding energies of the optimum structures from both procedures correlated well with the reported binding affinity values. The most potent and efficacious of the ligands adopted conformations characterized by interactions with both the helix-3 lysine and hydrophobic residues that interact with CP55244. The other five compounds formed fewer or less energetically favorable interactions with these critical residues. The flexibility of the tested anandamide analogs, measured by torsion angles around the benzene as well as the stretch between side chain moieties, could contribute to the differences in ability to interact with the CB1 receptor. Conclusion Analyses of multiple poses of conformationally-restricted anandamide analogs permitted identification of favored amino acid interactions within the CB1 receptor binding pocket. A ligand possessing both high affinity and cannabinoid agonist efficacy was able to interact with both polar and hydrophobic interaction sites utilized by the potent and efficacious non-classical cannabinoid CP55940. In contrast, other analogs characterized by reduced affinity or efficacy exhibited less favorable interactions with those key residues.

Collaboration


Dive into the Joong-Youn Shim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann M. Richard

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

William J. Welsh

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwang H. Ahn

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Lea W. Padgett

Armstrong State University

View shared research outputs
Top Co-Authors

Avatar

Lee G. Pedersen

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge