Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joongmoo Byun is active.

Publication


Featured researches published by Joongmoo Byun.


Exploration Geophysics | 2013

Elastic modelling in tilted transversely isotropic media with convolutional perfectly matched layer boundary conditions

Byeongho Han; Soon Jee Seol; Joongmoo Byun

To simulate wave propagation in a tilted transversely isotropic (TTI) medium with a tilting symmetry-axis of anisotropy, we develop a 2D elastic forward modelling algorithm. In this algorithm, we use the staggered-grid finite-difference method which has fourth-order accuracy in space and second-order accuracy in time. Since velocity-stress formulations are defined for staggered grids, we include auxiliary grid points in the z-direction to meet the free surface boundary conditions for shear stress. Through comparisons of displacements obtained from our algorithm, not only with analytical solutions but also with finite element solutions, we are able to validate that the free surface conditions operate appropriately and elastic waves propagate correctly. In order to handle the artificial boundary reflections efficiently, we also implement convolutional perfectly matched layer (CPML) absorbing boundaries in our algorithm. The CPML sufficiently attenuates energy at the grazing incidence by modifying the damping profile of the PML boundary. Numerical experiments indicate that the algorithm accurately expresses elastic wave propagation in the TTI medium. At the free surface, the numerical results show good agreement with analytical solutions not only for body waves but also for the Rayleigh wave which has strong amplitude along the surface. In addition, we demonstrate the efficiency of CPML for a homogeneous TI medium and a dipping layered model. Only using 10 grid points to the CPML regions, the artificial reflections are successfully suppressed and the energy of the boundary reflection back into the effective modelling area is significantly decayed. In this study, we developed a forward modelling algorithm with the staggered-grid finite-difference method. The elastic wave propagation in 2D tilted transversely isotropic media is well simulated using this algorithm. We also implement convolutional perfectly matched layer absorbing boundaries in our algorithm in order to handle the artificial boundary reflection efficiently.


Geophysics | 2010

Crosswell monitoring using virtual sources and horizontal wells

Joongmoo Byun; Jeongmin Yu; Soon Jee Seol

Time-lapse crosswell seismic provides an efficient way to monitor the migration of a C O2 plume or its leakage after C O2 injection into a geologic formation. Recently, crosswell seismic has become a powerful tool for monitoring underground variations, using the concept of a virtual source, with virtual sources positioned at the receivers installed in the well and thus the positions of sources and receivers can be invariant during monitoring. However, time-lapse crosswell seismic using vertical wells and virtual sources has difficulty in describing the front of a C O2 plume, which usually is parallel to the vertical wells, and in obtaining sufficient ray coverage for the first-arrival tomography. These problems arise because of the theoretical downward-illumination-directivity limitation of the virtual source. We have developed an effective monitoring method that uses virtual sources and two horizontal wells: one above and one below the C O2 sequestration reservoir. In our method, we redatum the traces th...


Exploration Geophysics | 2015

mCSEM inversion for CO2 sequestration monitoring at a deep brine aquifer in a shallow sea

Seogi Kang; Kyubo Noh; Soon Jee Seol; Joongmoo Byun

Carbon dioxide injection monitoring in offshore environments is a promising future application of the marine controlled-source electromagnetic (mCSEM) method. To investigate whether the mCSEM method can be used to quantitatively monitor variations in the distribution of the injected CO2, we developed a mCSEM inversion scheme and conducted numerical analyses. Furthermore, to demonstrate the monitoring capability of the mCSEM method in challenging environments, we used a deep brine aquifer model in shallow sea as an injection target. The mCSEM responses of the injected CO2 in the deep brine aquifer were severely decayed and heavily masked by the air wave due to the proximity of the free space. Therefore, the accurate computation of small mCSEM responses due to the injected CO2 and the proper incorporation into the inversion process are critically important for the mCSEM method to be successful. Additionally, in monitoring situations, some useful a priori information is usually available (e.g. well logs and seismic sections), and the proper implementation of this to our inversion framework is crucial to ensure reliable estimation of the distribution of the injected CO2 plume. In this study, we developed an efficient 2.5D mCSEM inversion algorithm based on an accurate forward modelling algorithm and the judicious incorporation of a priori information into our inversion scheme. The inversion scheme was tested with simplified and realistic CO2 injection models and successfully recovered the resistivity distributions of the injected CO2, although it still required the presence of a considerable amount of the injected CO2. Based on these inversion experiments, we demonstrated that the mCSEM method is capable of quantitatively monitoring variations in the distribution of injected CO2 in offshore environments. We developed an efficient 2.5D mCSEM inversion algorithm based on an accurate forward modelling algorithm and the judicious incorporation of a priori information into our inversion scheme. We demonstrated the successful recovery of resistivity distributions of the injected CO2 from the deep brine aquifer model in the shallow sea.


Exploration Geophysics | 2010

Automatic velocity analysis using bootstrapped differential semblance and global search methods

Hyungwook Choi; Joongmoo Byun; Soon Jee Seol

The goal of automatic velocity analysis is to extract accurate velocity from voluminous seismic data with efficiency. In this study, we developed an efficient automatic velocity analysis algorithm by using bootstrapped differential semblance (BDS) and Monte Carlo inversion. To estimate more accurate results from automatic velocity analysis, the algorithm we have developed uses BDS, which provides a higher velocity resolution than conventional semblance, as a coherency estimator. In addition, our proposed automatic velocity analysis module is performed with a conditional initial velocity determination step that leads to enhanced efficiency in running time of the module. A new optional root mean square (RMS) velocity constraint, which prevents picking false peaks, is used. The developed automatic velocity analysis module was tested on a synthetic dataset and a marine field dataset from the East Sea, Korea. The stacked sections made using velocity results from our algorithm showed coherent events and improved the quality of the normal moveout-correction result. Moreover, since our algorithm finds interval velocity (vint) first with interval velocity constraints and then calculates a RMS velocity function from the interval velocity, we can estimate geologically reasonable interval velocities. Boundaries of interval velocities also match well with reflection events in the common midpoint stacked sections.


Geophysics and Geophysical Exploration | 2014

Joint Electromagnetic Inversion with Structure Constraints Using Full-waveform Inversion Result

Soocheol Jeong; Soon Jee Seol; Joongmoo Byun

Compared with the separated inversion of electromagnetic (EM) and seismic data, a joint inversion using both EM and seismic data reduces the uncertainty and gives the opportunity to use the advantage of each data. Seismic fullwaveform inversion allows velocity information with high resolution in complicated subsurface. However, it is an indirect survey which finds the structure containing oil and gas. On the other hand, marine controlled-source EM (mCSEM) inversion can directly indicate the oil and gas using different EM properties of hydrocarbon with marine sediments and cap rocks whereas it has poor resolution than seismic method. In this paper, we have developed a joint EM inversion algorithm using a cross-gradient technique. P-wave velocity structure obtained by full-waveform inversion using plane wave encoding is used as structure constraints to calculate the cross-gradient term in the joint inversion. When the jointinversion algorithm is applied to the synthetic data which are simulated for subsea reservoir exploration, images have been significantly improved over those obtained from separate EM inversion. The results indicate that the developed joint inversion scheme can be applied for detecting reservoir and calculating the accurate oil and gas reserves.


Geophysical Prospecting | 2015

Imaging pre‐existing natural fractures using microseismic data

Myungsun Kim; Heewon Tak; Joongmoo Byun

In hydraulic fracturing treatments, locating not only hydraulic fractures but also any pre-existing natural fractures and faults in a subsurface reservoir is very important. Hydraulic fractures can be tracked by locating microseismic events, but to identify the locations of natural fractures, an additional technique is required. In this paper, we present a method to image pre-existing fractures and faults near a borehole with virtual reverse vertical seismic profiling data or virtual single-well profiling data (limited to seismic reflection data) created from microseismic monitoring using seismic interferometry. The virtual source data contain reflections from natural fractures and faults, and these features can be imaged by applying migration to the virtual source data. However, the imaging zone of fractures in the proposed method is strongly dependent on the geographic extent of the microseismic events and the location and direction of the fracture. To verify our method, we produced virtual reverse vertical seismic profiling and single-well profiling data from synthetic microseismic data and compared them with data from real sources in the same relative position as the virtual sources. The results show that the reflection travel times from the fractures in the virtual source data agree well with travel times in the real-source data. By applying pre-stack depth migration to the virtual source data, images of the natural fractures were obtained with accurate locations. However, the migrated section of the single-well profiling data with both real and virtual sources contained spurious fracture images on the opposite side of the borehole. In the case of virtual single-well profiling data, we could produce correct migration images of fractures by adopting directional redatuming for which the occurrence region of microseismic events is divided into several subdivisions, and fractures located only on the opposite side of the borehole are imaged for each subdivision.


Exploration Geophysics | 2015

Imaging tilted transversely isotropic media with a generalised screen propagator

Sung-Il Shin; Joongmoo Byun; Soon Jee Seol

One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers. We expand the vertical transversely isotropic generalised screen propagator into a tilted transversely isotropic generalised screen propagator (TTI-GSP) by adopting tilted coordinates. The validity of the developed algorithm has been tested by increasing the accuracy of wide-angle propagation in TTI-GSP with high-order expansion of the velocity perturbation.


Geophysics and Geophysical Exploration | 2012

Computation of Apparent Resistivity from Marine Controlled-source Electromagnetic Data for Identifying the Geometric Distribution of Gas Hydrate

Kyubo Noh; Seogi Kang; Soon Jee Seol; Joongmoo Byun

요약: 해양 전자탐사의 겉보기 비저항은 해수층으로 인해 지표탐사와 그 정의가 달라지게 되며, 이를 적절히 계산할 수있는 알고리듬의 개발은 해양 전자탐사의 출발점이 될 수 있다. 이를 위해, 1차원 층서 가스 하이드레이트 수치모형과 해수층과 그 하부의 반 무한매질로 이루어진 수치모형에서 계산한 전자기적 반응을 비교분석하였다. 겉보기 비저항을 계산하기 위해서는 실수와 허수 성분 보다는 진폭과 위상을 사용하는 것이 더 적합하였으며 해양 전자탐사 반응의 민감도를정량적으로 분석하여, 근거리 영역에서는 위상이 원거리 영역에서는 진폭 성분이 더 안정적인 결과를 주는 것을 알았다.또한 위상과 진폭의 선택기준으로써 유도상수의 값을 제안하였다. 이러한 분석을 토대로 격자 탐색법(grid search)을 사용하여 겉보기 비저항을 계산하는 수치알고리듬을 개발하였다. 개발된 알고리듬을 이용하여 1차원 층서 가스 하이드레이트수치모형의 다양한 변수를 변화시켜가며 겉보기 비저항을 계산해봄으로써 알고리듬의 타당성을 검증하였다. 마지막으로,계산한 겉보기 비저항 값을 이용한 가스 하이드레이트 부존양상 정보의 도출가능성을 살펴보았다. 동해 울릉분지의 가스하이드레이트 부존양상을 모사한 2차원 가스 하이드레이트 수치모형에서 계산된 자료의 겉치레 단면도는 가스 하이드레이트 부존양상 정보 추출이 가능함을 보여주었다. 주요어: 해양 전자탐사, 겉보기 비저항, 가스 하이드레이트, 부존양상Abstract: The sea layer in marine Controlled-Source Electromagnetic (mCSEM) survey changes the conventionaldefinition of apparent resistivity which is used in the land CSEM survey. Thus, the development of a new algorithm,which computes apparent resistivity for mCSEM survey, can be an initiative of mCSEM data interpretation. First, wecompared and analyzed electromagnetic responses of the 1D stratified gas hydrate model and the half-space model belowthe sea layer. Amplitude and phase components showed proper results for computing apparent resistivity than real andimaginary components. Next, the amplitude component is more sensitive to the subsurface resistivity than the phasecomponent in far offset range and vice versa. We suggested the induction number as a selection criteria of amplitudeor phase component to calculate apparent resistivity. Based on our study, we have developed a numerical algorithm, whichcomputes appropriate apparent resistivity corresponding to measured mCSEM data using grid search method. In addition,we verified the validity of the developed algorithm by applying it to the stratified gas hydrate models with various modelparameters. Finally, by constructing apparent resistivity pseudo-section from the mCSEM responses with 2D numericalmodels simulating gas hydrate deposits in the Ulleung Basin, we confirmed that the apparent resistivity can provide theinformation on the geometric distribution of the gas hydrate deposit.Keywords: mCSEM, apparent resistivity, gas hydrate, geometrical distribution


Exploration Geophysics | 2017

Fast first arrival picking algorithm for noisy microseismic data

Dowan Kim; Joongmoo Byun; Minho Lee; Jihoon Choi; Myungsun Kim

Most microseismic events occur during hydraulic fracturing. Thus microseismic monitoring, by recording seismic waves from microseismic events, is one of the best methods for locating the positions of hydraulic fractures. However, since microseismic events have very low energy, the data often have a low signal-to-noise ratio (S/N ratio) and it is not easy to pick the first arrival time. In this study, we suggest a new fast picking method optimised for noisy data using cross-correlation and stacking. In this method, a reference trace is selected and the time differences between the first arrivals of the reference trace and those of the other traces are computed by cross-correlation. Then, all traces are aligned with the reference trace by time shifting, and the aligned traces are summed together to produce a stacked reference trace that has a considerably improved S/N ratio. After the first arrival time of the stacked reference trace is picked, the first arrival time of each trace is calculated automatically using the time differences obtained in the cross-correlation process. In experiments with noisy synthetic data and field data, this method produces more reliable results than the traditional method, which picks the first arrival time of each noisy trace separately. In addition, the computation time is dramatically reduced. We have developed a new fast picking method, optimised for noisy microseismic data, using cross-correlation and stacking. In experiments with synthetic data and field data, this method produces reliable results and the computation time is dramatically reduced.


Exploration Geophysics | 2017

Converted-wave guided imaging condition for elastic reverse time migration with wavefield separation

Hyungwook Choi; Soon Jee Seol; Joongmoo Byun

Elastic reverse time migration (ERTM), which is capable of using multicomponent seismic data, provides not only an improvement of the P-P image compared to the one derived from acoustic RTM, but also more opportunities to understand the subsurface through converted wave images (P-S, S-P, and S-S images). However, the polarity reversals in P-S and S-P images and cross-talk noises generated in S-P and S-S images degrade the converted wave images of ERTM. To overcome these problems, we derive a new P-S converted wave imaging condition for 2D ERTM based on wavefield separation techniques. The proposed imaging condition, called converted-wave guided (CWG) imaging condition, incorporates an extra term that represents the sign and wavelength of S-waves converted from source wavefields into the zero-lag cross-correlation imaging condition for P-S imaging. The extra term compensates for the polarity reversal of separated S-waves from receiver wavefields because the converted S-waves from source wavefields also have the change in polarity. In addition, since this CWG imaging condition produces images where P- and S-waves from source wavefields and S-waves from receiver wavefields coincide, image resolution is enhanced without generating spurious events. Our approach is motivated by the specific feature of ERTM that generates converted waves at the reflection points (conventional imaging points) when proper elastic models are used. Through a numerical experiment with a simple elastic model, we demonstrate that the proposed CWG imaging condition successfully corrects the polarity reversal and provides higher image resolution. We also test our migration algorithm on a synthetic ocean bottom cable (OBC) dataset created using the Marmousi-II model. The P-S image obtained from CWG imaging condition shows continuous events and improved image resolution. Polarity reversals and cross-talk noises, which degrade the converted wave images (P-S, S-P, and S-S images) of elastic reverse time migration (ERTM), are addressed. To overcome these problems, we derive a new P-S converted wave imaging condition for ERTM based on wavefield separation techniques.

Collaboration


Dive into the Joongmoo Byun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Geun Yoo

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seogi Kang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge