Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joop E. M. Vermeer is active.

Publication


Featured researches published by Joop E. M. Vermeer.


Nature | 2011

A novel protein family mediates Casparian strip formation in the endodermis

Daniele Roppolo; Bert De Rybel; Valérie Dénervaud Tendon; Alexandre Pfister; Julien Alassimone; Joop E. M. Vermeer; Misako Yamazaki; York-Dieter Stierhof; Tom Beeckman; Niko Geldner

Polarized epithelia are fundamental to multicellular life. In animal epithelia, conserved junctional complexes establish membrane diffusion barriers, cellular adherence and sealing of the extracellular space. Plant cellular barriers are of independent evolutionary origin. The root endodermis strongly resembles a polarized epithelium and functions in nutrient uptake and stress resistance. Its defining features are the Casparian strips, belts of specialized cell wall material that generate an extracellular diffusion barrier. The mechanisms localizing Casparian strips are unknown. Here we identify and characterize a family of transmembrane proteins of previously unknown function. These ‘CASPs’ (Casparian strip membrane domain proteins) specifically mark a membrane domain that predicts the formation of Casparian strips. CASP1 displays numerous features required for a constituent of a plant junctional complex: it forms complexes with other CASPs; it becomes immobile upon localization; and it sediments like a large polymer. CASP double mutants display disorganized Casparian strips, demonstrating a role for CASPs in structuring and localizing this cell wall modification. To our knowledge, CASPs are the first molecular factors that are shown to establish a plasma membrane and extracellular diffusion barrier in plants, and represent a novel way of epithelial barrier formation in eukaryotes.


The Plant Cell | 2008

The Arabidopsis Phosphatidylinositol Phosphate 5-Kinase PIP5K3 Is a Key Regulator of Root Hair Tip Growth

Hiroaki Kusano; Christa Testerink; Joop E. M. Vermeer; Tomohiko Tsuge; Hiroaki Shimada; Atsuhiro Oka; Teun Munnik; Takashi Aoyama

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] functions as a site-specific signal on membranes to promote cytoskeletal reorganization and membrane trafficking. Localization of PtdIns(4,5)P2 to apices of growing root hairs and pollen tubes suggests that it plays an important role in tip growth. However, its regulation and mode of action remain unclear. We found that Arabidopsis thaliana PIP5K3 (for Phosphatidylinositol Phosphate 5-Kinase 3) encodes a phosphatidylinositol 4-phosphate 5-kinase, a key enzyme producing PtdIns(4,5)P2, that is preferentially expressed in growing root hairs. T-DNA insertion mutations that substantially reduced the expression of PIP5K3 caused significantly shorter root hairs than in the wild type. By contrast, overexpression caused longer root hairs and multiple protruding sites on a single trichoblast. A yellow fluorescent protein (YFP) fusion of PIP5K3, driven by the PIP5K3 promoter, complemented the short-root-hair phenotype. PIP5K3-YFP localized to the plasma membrane and cytoplasmic space of elongating root hair apices, to growing root hair bulges, and, notably, to sites about to form root hair bulges. The signal was greatest in rapidly growing root hairs and quickly disappeared when elongation ceased. These results provide evidence that PIP5K3 is involved in localizing PtdIns(4,5)P2 to the elongating root hair apex and is a key regulator of the machinery that initiates and promotes root hair tip growth.


Plant Journal | 2009

Imaging phosphatidylinositol 4‐phosphate dynamics in living plant cells

Joop E. M. Vermeer; Julie M. Thole; Joachim Goedhart; Erik Nielsen; Teun Munnik; Theodorus W. J. Gadella

Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4P) is the most abundant polyphosphoinositide. (32)Pi-labelling studies have shown that the turnover of PtdIns4P is rapid, but little is known about where in the cell or plant this occurs. Here, we describe the use of a lipid biosensor that monitors PtdIns4P dynamics in living plant cells. The biosensor consists of a fusion between a fluorescent protein and a lipid-binding domain that specifically binds PtdIns4P, i.e. the pleckstrin homology domain of the human protein phosphatidylinositol-4-phosphate adaptor protein-1 (FAPP1). YFP-PH(FAPP1) was expressed in four plant systems: transiently in cowpea protoplasts, and stably in tobacco BY-2 cells, Medicago truncatula roots and Arabidopsis thaliana seedlings. All systems allowed YFP-PH(FAPP1) expression without detrimental effects. Two distinct fluorescence patterns were observed: labelling of motile punctate structures and the plasma membrane. Co-expression studies with organelle markers revealed strong co-labelling with the Golgi marker STtmd-CFP, but not with the endocytic/pre-vacuolar marker GFP-AtRABF2b. Co-expression with the Ptdins3P biosensor YFP-2 x FYVE revealed totally different localization patterns. During cell division, YFP-PH(FAPP1) showed strong labelling of the cell plate, but PtdIns3P was completely absent from the newly formed cell membrane. In root hairs of M. truncatula and A. thaliana, a clear PtdIns4P gradient was apparent in the plasma membrane, with the highest concentration in the tip. This only occurred in growing root hairs, indicating a role for PtdIns4P in tip growth.


Plant Journal | 2009

Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus

Michael Mishkind; Joop E. M. Vermeer; Essam Darwish; Teun Munnik

Heat stress induces an array of physiological adjustments that facilitate continued homeostasis and survival during periods of elevated temperatures. Here, we report that within minutes of a sudden temperature increase, plants deploy specific phospholipids to specific intracellular locations: phospholipase D (PLD) and a phosphatidylinositolphosphate kinase (PIPK) are activated, and phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP(2)) rapidly accumulate, with the heat-induced PIP(2) localized to the plasma membrane, nuclear envelope, nucleolus and punctate cytoplasmic structures. Increases in the steady-state levels of PA and PIP(2) occur within several minutes of temperature increases from ambient levels of 20-25 degrees C to 35 degrees C and above. Similar patterns were observed in heat-stressed Arabidopsis seedlings and rice leaves. The PA that accumulates in response to temperature increases results in large part from the activation of PLD rather than the sequential action of phospholipase C and diacylglycerol kinase, the alternative pathway used to produce this lipid. Pulse-labelling analysis revealed that the PIP(2) response is due to the activation of a PIPK rather than inhibition of a lipase or a PIP(2) phosphatase. Inhibitor experiments suggest that the PIP(2) response requires signalling through a G-protein, as aluminium fluoride blocks heat-induced PIP(2) increases. These results are discussed in the context of the diverse cellular roles played by PIP(2) and PA, including regulation of ion channels and the cytoskeleton.


The Plant Cell | 2008

ROOT HAIR DEFECTIVE4 Encodes a Phosphatidylinositol-4-Phosphate Phosphatase Required for Proper Root Hair Development in Arabidopsis thaliana

Julie M. Thole; Joop E. M. Vermeer; Yanling Zhang; Theodorus W. J. Gadella; Erik Nielsen

Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair–defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed membrane dynamics after labeling with RabA4b, a marker for polarized membrane trafficking in root hairs. This revealed stochastic loss and recovery of the RabA4b compartment in the tips of growing root hairs, consistent with a role for the RHD4 protein in regulation of polarized membrane trafficking in these cells. The wild-type RHD4 gene was identified by map-based cloning and was found to encode a Sac1p-like phosphoinositide phosphatase. RHD4 displayed a preference for phosphatidylinositol-4-phosphate [PI(4)P] in vitro, and rhd4-1 roots accumulated higher levels of PI(4)P in vivo. In wild-type root hairs, PI(4)P accumulated primarily in a tip-localized plasma membrane domain, but in rhd4-1 mutants, significant levels of PI(4)P were detected associated with internal membranes. A fluorescent RHD4 fusion protein localized to membranes at the tips of growing root hairs. We propose that RHD4 is selectively recruited to RabA4b-labeled membranes that are involved in polarized expansion of root hair cells and that, in conjunction with the phosphoinositide kinase PI-4Kβ1, RHD4 regulates the accumulation of PI(4)P on membrane compartments at the tips of growing root hairs.


Nature Cell Biology | 2008

An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour

Walter Verweij; Cornelis Spelt; Gian Pietro Di Sansebastiano; Joop E. M. Vermeer; Lara Reale; Francesco Ferranti; Ronald Koes; Francesca Quattrocchio

The regulation of pH in cellular compartments is crucial for intracellular trafficking of vesicles and proteins and the transport of small molecules, including hormones. In endomembrane compartments, pH is regulated by vacuolar H+-ATPase (V-ATPase), which, in plants, act together with H+-pyrophosphatases (PPase), whereas distinct P-type H+-ATPases in the cell membrane control the pH in the cytoplasm and energize the plasma membrane. Flower colour mutants have proved useful in identifying genes controlling the pH of vacuoles where anthocyanin pigments accumulate. Here we show that PH5 of petunia encodes a P3A-ATPase proton pump that, unlike other P-type H+-ATPases, resides in the vacuolar membrane. Mutation of PH5 reduces vacuolar acidification in petals, resulting in a blue flower colour and abolishes the accumulation of proanthocyanindins (condensed tannins) in seeds. Expression of PH5 is directly activated by transcription regulators of the anthocyanin pathway, in conjunction with PH3 and PH4. Thus, flower coloration, a key-factor in plant reproduction, involves the coordinated activation of pigment synthesis and a specific pathway for vacuolar acidification.


Science | 2014

A Spatial Accommodation by Neighboring Cells Is Required for Organ Initiation in Arabidopsis

Joop E. M. Vermeer; Daniel von Wangenheim; Marie Barberon; Yuree Lee; Ernst H. K. Stelzer; Alexis Maizel; Niko Geldner

Make Way for the Emerging Rootlet Plant cells are immobilized by their rigid cells walls, and the root endodermal cell layer maintains a impervious perimeter seal made of an indigestible irregular polymer. Despite these mechanical obstacles, lateral root primordia, which initiate in the deep layers of the root, manage to break through to the surface. Vermeer et al. (p. 178; see the cover) used live-tissue imaging and genetics to show that signals are exchanged between the root primordium and the handful of cells overlying it, which then cave in on themselves to open up a channel for the growing root primordium. Localized disruption of surrounding plant cell walls paves the way for lateral root development. Lateral root formation in plants can be studied as the process of interaction between chemical signals and physical forces during development. Lateral root primordia grow through overlying cell layers that must accommodate this incursion. Here, we analyze responses of the endodermis, the immediate neighbor to an initiating lateral root. Endodermal cells overlying lateral root primordia lose volume, change shape, and relinquish their tight junction–like diffusion barrier to make way for the emerging lateral root primordium. Endodermal feedback is absolutely required for initiation and growth of lateral roots, and we provide evidence that this is mediated by controlled volume loss in the endodermis. We propose that turgidity and rigid cell walls, typical of plants, impose constraints that are specifically modified for a given developmental process.


Cell | 2016

Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation

Marie Barberon; Joop E. M. Vermeer; Damien De Bellis; Peng Wang; Sadaf Naseer; Tonni Grube Andersen; Bruno M. Humbel; Christiane Nawrath; Junpei Takano; David E. Salt; Niko Geldner

Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips--cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.


PLOS ONE | 2007

Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples.

Joachim Goedhart; Joop E. M. Vermeer; Merel J. W. Adjobo-Hermans; Laura van Weeren; Theodorus W. J. Gadella

Background Fluorescence Resonance Energy Transfer (FRET) between the green fluorescent protein (GFP) variants CFP and YFP is widely used for the detection of protein-protein interactions. Nowadays, several monomeric red-shifted fluorescent proteins are available that potentially improve the efficiency of FRET. Methodology/Principal Findings To allow side-by-side comparison of several fluorescent protein combinations for detection of FRET, yellow or orange fluorescent proteins were directly fused to red fluorescent proteins. FRET from yellow fluorescent proteins to red fluorescent proteins was detected by both FLIM and donor dequenching upon acceptor photobleaching, showing that mCherry and mStrawberry were more efficient acceptors than mRFP1. Circular permutated yellow fluorescent protein variants revealed that in the tandem constructs the orientation of the transition dipole moment influences the FRET efficiency. In addition, it was demonstrated that the orange fluorescent proteins mKO and mOrange are both suitable as donor for FRET studies. The most favorable orange-red FRET pair was mKO-mCherry, which was used to detect homodimerization of the NF-κB subunit p65 in single living cells, with a threefold higher lifetime contrast and a twofold higher FRET efficiency than for CFP-YFP. Conclusions/Significance The observed high FRET efficiency of red-shifted couples is in accordance with increased Förster radii of up to 64 Å, being significantly higher than the Förster radius of the commonly used CFP-YFP pair. Thus, red-shifted FRET pairs are preferable for detecting protein-protein interactions by donor-based FRET methods in single living cells.


eLife | 2014

A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects

Alexandre Pfister; Marie Barberon; Julien Alassimone; Lothar Kalmbach; Yuree Lee; Joop E. M. Vermeer; Misako Yamazaki; Guowei Li; Christophe Maurel; Junpei Takano; Takehiro Kamiya; David E. Salt; Daniele Roppolo; Niko Geldner

The endodermis represents the main barrier to extracellular diffusion in plant roots, and it is central to current models of plant nutrient uptake. Despite this, little is known about the genes setting up this endodermal barrier. In this study, we report the identification and characterization of a strong barrier mutant, schengen3 (sgn3). We observe a surprising ability of the mutant to maintain nutrient homeostasis, but demonstrate a major defect in maintaining sufficient levels of the macronutrient potassium. We show that SGN3/GASSHO1 is a receptor-like kinase that is necessary for localizing CASPARIAN STRIP DOMAIN PROTEINS (CASPs)—major players of endodermal differentiation—into an uninterrupted, ring-like domain. SGN3 appears to localize into a broader band, embedding growing CASP microdomains. The discovery of SGN3 strongly advances our ability to interrogate mechanisms of plant nutrient homeostasis and provides a novel actor for localized microdomain formation at the endodermal plasma membrane. DOI: http://dx.doi.org/10.7554/eLife.03115.001

Collaboration


Dive into the Joop E. M. Vermeer's collaboration.

Top Co-Authors

Avatar

Teun Munnik

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Laxalt

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge