Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joop J. A. van Loon is active.

Publication


Featured researches published by Joop J. A. van Loon.


Entomologia Experimentalis Et Applicata | 2000

Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context

Marcel Dicke; Joop J. A. van Loon

Herbivorous and carnivorous arthropods use plant volatiles when foraging for food. In response to herbivory, plants emit a blend that may be quantitatively and qualitatively different from the blend emitted when intact. This induced volatile blend alters the interactions of the plant with its environment. We review recent developments regarding the induction mechanism as well as the ecological consequences in a multitrophic and evolutionary context. It has been well established that carnivores (predators and parasitoids) are attracted by the volatiles induced by their herbivorous victims. This concerns an active plant response. In the case of attraction of predators, this is likely to result in a fitness benefit to the plant, because through consumption a predator removes the herbivores from the plant. However, the benefit to the plant is less clear when parasitoids are attracted, because parasitisation does usually not result in an instantaneous or in a complete termination of consumption by the herbivore. Recently, empirical evidence has been obtained that shows that the plants response can increase plant fitness, in terms of seed production, due to a reduced consumption rate of parasitized herbivores. However, apart from a benefit from attracting carnivores, the induced volatiles can have a serious cost because there is an increasing number of studies that show that herbivores can be attracted. However, this does not necessarily result in settlement of the herbivores on the emitting plant. The presence of cues from herbivores and/or carnivores that indicate that the plant is a competitor‐ and/or enemy‐dense space, may lead to an avoidance response. Thus, the benefit of emission of induced volatiles is likely to depend on the prevailing faunal composition. Whether plants can adjust their response and influence the emission of the induced volatiles, taking the prevalent environmental conditions into account, is an interesting question that needs to be addressed. The induced volatiles may also affect interactions of the emitting plant with its neighbours, e.g., through altered competitive ability or by the neighbour exploiting the emitted information.


Nature Chemical Biology | 2009

Chemical complexity of volatiles from plants induced by multiple attack.

Marcel Dicke; Joop J. A. van Loon; Roxina Soler

The attack of a plant by herbivorous arthropods can result in considerable changes in the plants chemical phenotype. The emission of so-called herbivore-induced plant volatiles (HIPV) results in the attraction of carnivorous enemies of the herbivores that induced these changes. HIPV induction has predominantly been investigated for interactions between one plant and one attacker. However, in nature plants are exposed to a variety of attackers, either simultaneously or sequentially, in shoots and roots, causing much more complex interactions than have usually been investigated in the context of HIPV. To develop an integrated view of how plants respond to their environment, we need to know more about the ways in which multiple attackers can enhance, attenuate, or otherwise alter HIPV responses. A multidisciplinary approach will allow us to investigate the underlying mechanisms of HIPV emission in terms of phytohormones, transcriptional responses and biosynthesis of metabolites in an effort to understand these complex plant-arthropod interactions.


Trends in Plant Science | 2010

Helping plants to deal with insects: the role of beneficial soil-borne microbes

Ana Pineda; Si-Jun Zheng; Joop J. A. van Loon; Corné M. J. Pieterse; Marcel Dicke

Several soil-borne microbes such as mycorrhizal fungi and plant growth-promoting rhizobacteria can help plants to deal with biotic and abiotic stresses via plant growth promotion and induced resistance. Such beneficial belowground microbes interact in a bidirectional way via the plant with aboveground insects such as herbivores, their natural enemies and pollinators. The role of these interactions in natural and agricultural ecosystems is receiving increased attention, and the molecular and physiological mechanisms involved in these interactions should be the focus of more attention. Here, we review the recent discoveries on plant-mediated interactions between beneficial belowground microbes and aboveground insects.


Current Biology | 2007

Odor Coding in the Maxillary Palp of the Malaria Vector Mosquito Anopheles gambiae

Tan Lu; Yu Tong Qiu; Guirong Wang; Jae Young Kwon; Michael Rützler; Hyung Wook Kwon; R. Jason Pitts; Joop J. A. van Loon; Willem Takken; John R. Carlson; Laurence J. Zwiebel

BACKGROUND Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO(2)) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown. RESULTS Here, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO(2)-responsive and characterized by the coexpression of three receptors that confer CO(2) responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses. CONCLUSIONS Our results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gambiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria.


Entomologia Experimentalis Et Applicata | 2003

Dietary specialization and infochemical use in carnivorous arthropods: testing a concept

Johannes L. M. Steidle; Joop J. A. van Loon

For the location of hosts and prey, insect carnivores (i.e., parasitoids or predators) often use infochemical cues that may originate from the host/prey itself but also from the food of the host/prey, a food plant, or another feeding substrate. These cues can be either specific for certain host/prey complexes or generally present in various complexes, and the reaction of the carnivores to these cues is either innate or learned. According to the concept on dietary specialization and infochemical use in natural enemies, the origin and specificity of the infochemical cues used and the innateness of the behavioural response are dependent on the degree of dietary specialization of the carnivore and its host/prey species. This concept has been widely adopted and has been frequently cited since its publication. Only few studies, however, have been explicitly designed to test predictions of the concept. Thus, more than 10 years after publication and despite of its broad acceptance, the general validity of the concept is still unclear. Using data from about 140 research papers on 95 species of parasitoids and predators, the present literature study comparatively scrutinises predictions from the concept.


Annual Review of Plant Biology | 2014

Plant Interactions with Multiple Insect Herbivores: From Community to Genes

Jeltje M. Stam; Anneke Kroes; Yehua Li; Rieta Gols; Joop J. A. van Loon; Erik H. Poelman; Marcel Dicke

Every plant is a member of a complex insect community that consists of tens to hundreds of species that belong to different trophic levels. The dynamics of this community are critically influenced by the plant, which mediates interactions between community members that can occur on the plant simultaneously or at different times. Herbivory results in changes in the plants morphological or chemical phenotype that affect interactions with subsequently arriving herbivores. Changes in the plants phenotype are mediated by molecular processes such as phytohormonal signaling networks and transcriptomic rearrangements that are initiated by oral secretions of the herbivore. Processes at different levels of biological complexity occur at timescales ranging from minutes to years. In this review, we address plant-mediated interactions with multiple species of the associated insect community and their effects on community dynamics, and link these to the mechanistic effects that multiple attacks have on plant phenotypes.


Molecular Ecology | 2008

Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field

Erik H. Poelman; Colette Broekgaarden; Joop J. A. van Loon; Marcel Dicke

Induction of plant defences by early season herbivores can mediate interspecific herbivore competition. We have investigated plant‐mediated competition between three herbivorous insects through studies at different levels of biological integration. We have addressed (i) gene expression; (ii) insect behaviour and performance under laboratory conditions; and (iii) population dynamics under field conditions. We studied the expression of genes encoding a trypsin inhibitor and genes that are involved in glucosinolate biosynthesis in response to early season herbivory by Pieris rapae caterpillars in Brassica oleracea plants. Furthermore, we studied the interaction of these transcriptional responses with responses to secondary herbivory by the two specialist herbivores, P. rapae and Plutella xylostella, and the generalist Mamestra brassicae. P. rapae‐induced responses strongly interacted with plant responses to secondary herbivory. Sequential feeding by specialist herbivores resulted in enhanced or similar expression levels of defence‐related genes compared to primary herbivory by specialists. Secondary herbivory by the generalist M. brassicae resulted in lower gene expression levels than in response to primary herbivory by this generalist. Larval performance of both specialist and generalist herbivores was negatively affected by P. rapae‐induced plant responses. However, in the field the specialist P. xylostella was more abundant on P. rapae‐induced plants and preferred these plants over undamaged plants in oviposition experiments. In contrast, the generalist M. brassicae was more abundant on control plants and preferred undamaged plants for oviposition. P. rapae did not discriminate between plants damaged by conspecifics or undamaged plants. Our study shows that early season herbivory differentially affects transcriptional responses involved in plant defence to secondary herbivores and their population development dependent upon their degree of host plant specialization.


Entomologia Experimentalis Et Applicata | 2000

Parasitoid‐plant mutualism: parasitoid attack of herbivore increases plant reproduction

Joop J. A. van Loon; Jetske G. de Boer; Marcel Dicke

We tested whether a plants life time seed production is increased by parasitization of herbivores in a tritrophic system, Arabidopsis thaliana (Brassicaceae) plants, Pieris rapae (Lepidoptera: Pieridae) caterpillars and the solitary endoparasitoid Cotesia rubecula (Hymenoptera: Braconidae). We established seed production for intact A. thaliana plants, plants that were mechanically damaged, plants fed upon by parasitized caterpillars and plants fed upon by unparasitized caterpillars. In the first experiment, with ecotype Landsberg (erecta mutant), herbivory by unparasitized P. rapae caterpillars resulted in a strongly reduced seed production compared to undamaged plants. In contrast, damage by P. rapae caterpillars that had been parasitized by C. rubecula did not result in a significant reduction in seed production. For the second experiment with the ecotype Columbia, the results were identical. Plants damaged by unparasitized caterpillars only produced seeds on regrown shoots. Seed production of plants that had been mechanically damaged was statistically similar to that of undamaged plants. Production of the first ripe siliques by plants fed upon by unparasitized caterpillars was delayed by 18–22 days for Landsberg and 9–10 days for Columbia. We conclude that parasitization of P. rapae by C. rubecula potentially confers a considerable fitness benefit for A. thaliana plants when compared to plants exposed to feeding damage by unparasitized P. rapae larvae. Plants that attract parasitoids and parasitoids that respond to herbivore‐induced plant volatiles will both experience selective advantage, justifying the use of the term mutualism for this parasitoid‐plant interaction. This type of mutualism is undoubtedly very common in nature.


PLOS ONE | 2010

An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption.

D.G.A.B. Oonincx; Joost van Itterbeeck; M.J.W. Heetkamp; Henry van den Brand; Joop J. A. van Loon; Arnold van Huis

Background Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. Methodology/Principal Findings An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock. Conclusions/Significance This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis.


Trends in Plant Science | 2008

Consequences of variation in plant defense for biodiversity at higher trophic levels

Erik H. Poelman; Joop J. A. van Loon; Marcel Dicke

Antagonistic interactions between insect herbivores and plants impose selection on plants to defend themselves against these attackers. Although selection on plant defense traits has typically been studied for pairwise plant-attacker interactions, other community members of plant-based food webs are unavoidably affected by these traits as well. A plant trait might, for example, affect parasitoids and predators feeding on the herbivore. Consequently, defensive plant traits structure the diversity and composition of the complex community associated with the plant, and communities as a whole also feed back to selection on plant traits. Here, we review recent developments in our understanding of how plant defense traits structure insect communities and discuss how molecular mechanisms might drive community-wide effects.

Collaboration


Dive into the Joop J. A. van Loon's collaboration.

Top Co-Authors

Avatar

Marcel Dicke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Willem Takken

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Berhane T. Weldegergis

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Louise E. M. Vet

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Erik H. Poelman

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Nina E. Fatouros

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Rieta Gols

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ana Pineda

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Renate C. Smallegange

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge