Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joos V. Lebesque is active.

Publication


Featured researches published by Joos V. Lebesque.


International Journal of Radiation Oncology Biology Physics | 2002

Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy.

Yvette Seppenwoolde; Hiroki Shirato; Kei Kitamura; Shinichi Shimizu; Marcel van Herk; Joos V. Lebesque; Kazuo Miyasaka

PURPOSE In this work, three-dimensional (3D) motion of lung tumors during radiotherapy in real time was investigated. Understanding the behavior of tumor motion in lung tissue to model tumor movement is necessary for accurate (gated or breath-hold) radiotherapy or CT scanning. METHODS Twenty patients were included in this study. Before treatment, a 2-mm gold marker was implanted in or near the tumor. A real-time tumor tracking system using two fluoroscopy image processor units was installed in the treatment room. The 3D position of the implanted gold marker was determined by using real-time pattern recognition and a calibrated projection geometry. The linear accelerator was triggered to irradiate the tumor only when the gold marker was located within a certain volume. The system provided the coordinates of the gold marker during beam-on and beam-off time in all directions simultaneously, at a sample rate of 30 images per second. The recorded tumor motion was analyzed in terms of the amplitude and curvature of the tumor motion in three directions, the differences in breathing level during treatment, hysteresis (the difference between the inhalation and exhalation trajectory of the tumor), and the amplitude of tumor motion induced by cardiac motion. RESULTS The average amplitude of the tumor motion was greatest (12 +/- 2 mm [SD]) in the cranial-caudal direction for tumors situated in the lower lobes and not attached to rigid structures such as the chest wall or vertebrae. For the lateral and anterior-posterior directions, tumor motion was small both for upper- and lower-lobe tumors (2 +/- 1 mm). The time-averaged tumor position was closer to the exhale position, because the tumor spent more time in the exhalation than in the inhalation phase. The tumor motion was modeled as a sinusoidal movement with varying asymmetry. The tumor position in the exhale phase was more stable than the tumor position in the inhale phase during individual treatment fields. However, in many patients, shifts in the exhale tumor position were observed intra- and interfractionally. These shifts are the result of patient relaxation, gravity (posterior direction), setup errors, and/or patient movement.The 3D trajectory of the tumor showed hysteresis for 10 of the 21 tumors, which ranged from 1 to 5 mm. The extent of hysteresis and the amplitude of the tumor motion remained fairly constant during the entire treatment. Changes in shape of the trajectory of the tumor were observed between subsequent treatment days for only one patient. Fourier analysis revealed that for 7 of the 21 tumors, a measurable motion in the range 1-4 mm was caused by the cardiac beat. These tumors were located near the heart or attached to the aortic arch. The motion due to the heartbeat was greatest in the lateral direction. Tumor motion due to hysteresis and heartbeat can lower treatment efficiency in real-time tumor tracking-gated treatments or lead to a geographic miss in conventional or active breathing controlled treatments. CONCLUSION The real-time tumor tracking system measured the tumor position in all three directions simultaneously, at a sampling rate that enabled detection of tumor motion due to heartbeat as well as hysteresis. Tumor motion and hysteresis could be modeled with an asymmetric function with varying asymmetry. Tumor motion due to breathing was greatest in the cranial-caudal direction for lower-lobe unfixed tumors.


Journal of Clinical Oncology | 2006

Dose-Response in Radiotherapy for Localized Prostate Cancer: Results of the Dutch Multicenter Randomized Phase III Trial Comparing 68 Gy of Radiotherapy With 78 Gy

Stephanie T.H. Peeters; Wilma D. Heemsbergen; Peter C.M. Koper; Wim L.J. van Putten; Annerie Slot; Michel F.H. Dielwart; Johannes M.G. Bonfrer; Luca Incrocci; Joos V. Lebesque

PURPOSE To determine whether a dose of 78 Gy improves outcome compared with a conventional dose of 68 Gy for prostate cancer patients treated with three-dimensional conformal radiotherapy. PATIENTS AND METHODS Between June 1997 and February 2003, stage T1b-4 prostate cancer patients were enrolled onto a multicenter randomized trial comparing 68 Gy with 78 Gy. Patients were stratified by institution, age, (neo)adjuvant hormonal therapy (HT), and treatment group. Four treatment groups (with specific radiation volumes) were defined based on the probability of seminal vesicle involvement. The primary end point was freedom from failure (FFF). Failure was defined as clinical failure or biochemical failure, according to the American Society of Therapeutic Radiation Oncology definition. Other end points were freedom from clinical failure (FFCF), overall survival (OS), and toxicity. RESULTS Median follow-up time was 51 months. Of the 669 enrolled patients, 664 were included in the analysis. HT was prescribed for 143 patients. FFF was significantly better in the 78-Gy arm compared with the 68-Gy arm (5-year FFF rate, 64% v 54%, respectively), with an adjusted hazard ratio of 0.74 (P = .02). No significant differences in FFCF or OS were seen between the treatment arms. There was no difference in late genitourinary toxicity of Radiation Therapy Oncology Group and European Organisation for Research and Treatment of Cancer grade 2 or more and a slightly higher nonsignificant incidence of late gastrointestinal toxicity of grade 2 or more. CONCLUSION This multicenter randomized trial shows a significantly improved FFF in prostate cancer patients treated with a higher dose of radiotherapy.


International Journal of Radiation Oncology Biology Physics | 1998

Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients.

S.L.S. Kwa; Joos V. Lebesque; Jacqueline C.M. Theuws; Lawrence B. Marks; Mike T. Munley; Gunilla C. Bentel; Dieter Oetzel; Uwe Spahn; Mary V. Graham; Robert E. Drzymala; James A. Purdy; Allen S. Lichter; Mary K. Martel; Randall K. Ten Haken

PURPOSE To determine the relation between the incidence of radiation pneumonitis and the three-dimensional dose distribution in the lung. METHODS AND MATERIALS In five institutions, the incidence of radiation pneumonitis was evaluated in 540 patients. The patients were divided into two groups: a Lung group, consisting of 399 patients with lung cancer and 1 esophagus cancer patient and a Lymph./Breast group with 78 patients treated for malignant lymphoma, 59 for breast cancer, and 3 for other tumor types. The dose per fraction varied between 1.0 and 2.7 Gy and the prescribed total dose between 20 and 92 Gy. Three-dimensional dose calculations were performed with tissue density inhomogeneity correction. The physical dose distribution was converted into the biologically equivalent dose distribution given in fractions of 2 Gy, the normalized total dose (NTD) distribution, by using the linear quadratic model with an alpha/beta ratio of 2.5 and 3.0 Gy. Dose-volume histograms (DVHs) were calculated considering both lungs as one organ and from these DVHs the mean (biological) lung dose, NTDmean, was obtained. Radiation pneumonitis was scored as a complication when the pneumonitis grade was grade 2 (steroids needed for medical treatment) or higher. For statistical analysis the conventional normal tissue complication probability (NTCP) model of Lyman (with n=1) was applied along with an institutional-dependent offset parameter to account for systematic differences in scoring patients at different institutions. RESULTS The mean lung dose, NTDmean, ranged from 0 to 34 Gy and 73 of the 540 patients experienced pneumonitis, grade 2 or higher. In all centers, an increasing pneumonitis rate was observed with increasing NTDmean. The data were fitted to the Lyman model with NTD50=31.8 Gy and m=0.43, assuming that for all patients the same parameter values could be used. However, in the low dose range at an NTDmean between 4 and 16 Gy, the observed pneumonitis incidence in the Lung group (10%) was significantly (p=0.02) higher than in the Lymph./Breast group (1.4%). Moreover, between the Lung groups of different institutions, also significant (p=0.04) differences were present: for centers 2, 3, and 4, the pneumonitis incidence was about 13%, whereas for center 5 only 3%. Explicitly accounting for these differences by adding center-dependent offset values for the Lung group, improved the data fit significantly (p < 10(-5)) with NTD50=30.5+/-1.4 Gy and m=0.30+/-0.02 (+/-1 SE) for all patients, and an offset of 0-11% for the Lung group, depending on the center. CONCLUSIONS The mean lung dose, NTDmean, is relatively easy to calculate, and is a useful predictor of the risk of radiation pneumonitis. The observed dose-effect relation between the NTDmean and the incidence of radiation pneumonitis, based on a large clinical data set, might be of value in dose-escalating studies for lung cancer. The validity of the obtained dose-effect relation will have to be tested in future studies, regarding the influence of confounding factors and dose distributions different from the ones in this study.


International Journal of Radiation Oncology Biology Physics | 1995

Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration

Marcel van Herk; A. Bruce; A.P. Guus Kroes; T. Shouman; A. Touw; Joos V. Lebesque

PURPOSE Knowledge about the mobility of organs relative to the bony anatomy is of great importance when preparing and verifying conformal radiotherapy. The conventional technique for measuring the motion of an organ is to locate landmarks on the organ and the bony anatomy and to compare the distance between these landmarks on subsequent computerized tomography (CT) scans. The first purpose of this study is to investigate the use of a three dimensional (3D) image registration method based on chamfer matching for measurement of the location and orientation of the whole organ relative to the bony anatomy. The second purpose is to quantify organ motion during conformal therapy of the prostate. METHODS AND MATERIALS Four CT scans were made during the course of conformal treatment of 11 patients with prostate cancer. With the use of a 3D treatment planning system, the prostate and seminal vesicles were contoured interactively. In addition, bladder and rectum were contoured and the volume computed. Next, the bony anatomy of subsequent scans was segmented and matched automatically on the first scan. The femora and the pelvic bone were matched separately to quantify motion of the legs. Prostate (and seminal vesicle) contours from the subsequent scans were matched on the corresponding contours of the first scan, resulting in the 3D rotations and translations that describe the motion of the prostate and seminal vesicles relative to the pelvic bone. RESULTS Bone matching of two scans with about 50 slices of 256 x 256 pixels takes about 2 min on a workstation and achieves subpixel registration accuracy. Matching of the organ contours takes about 30 s. The accuracy in determining the relative movement of the prostate is 0.5 to 0.9 mm for translations (depending on the axis) and 1 degree for rotations (standard deviations). Because all organ contours are used for matching, small differences in delineation of the prostate, missing slices, or differences in slice distance have only a limited influence on the accuracy. Rotations of the femora and the pelvic bone are quantified with about 0.4 degree accuracy. A strong correlation was found between rectal volume and anterior-posterior translation and rotation around the left-right axis of the prostate. Consequently, these parameters had the largest standard deviations of 2.7 mm and 4.0 degrees. Bladder filling had much less influence. Less significant correlations were found between various leg rotations and pelvic and prostate motion. Standard deviations of the rotation angles of the pelvic bone were less than 1 degree in all directions. CONCLUSIONS Using 3D image registration, the motion of organs relative to bony anatomy has been quantified accurately. Uncertainties in contouring and visual interpretation of the scans have a much smaller influence on the measurement of organ displacement with our new method than with conventional methods. We have quantified correlations between rectal filling, leg motions, and prostate motion.


International Journal of Radiation Oncology Biology Physics | 1999

Definition of the prostate in CT and MRI: a multi-observer study

Coen R. N. Rasch; I. Barillot; P. Remeijer; A. Touw; Marcel van Herk; Joos V. Lebesque

PURPOSE To determine, in three-dimensions, the difference between prostate delineation in magnetic resonance (MR) and computer tomography (CT) images for radiotherapy treatment planning. PATIENTS AND METHODS Three radiation oncologists, considered experts in the field, outlined the prostate without seminal vesicles both on CT, and axial, coronal, and sagittal MR images for 18 patients. To compare the resulting delineated prostates, the CT and MR scans were matched in three-dimensions using chamfer matching on bony structures. The volumes were measured and the interscan and interobserver variation was determined. The spatial difference between delineation in CT and MR (interscan variation) as well as the interobserver variation were quantified and mapped three-dimensionally (3D) using polar coordinates. A urethrogram was performed and the location of the tip of the dye column was compared with the apex delineated in CT and MR images. RESULTS Interscan variation: CT volumes were larger than the axial MR volumes in 52 of 54 delineations. The average ratio between the CT and MR volumes was 1.4 (standard error of mean, SE: 0.04) which was significantly different from 1 (p < 0.005). Only small differences were observed between the volumes outlined in the various MR scans, although the coronal MR volumes were smallest. The CT derived prostate was 8 mm (standard deviation, SD: 6 mm) larger at the base of the seminal vesicles and 6 mm (SD 4 mm) larger at the apex of the prostate than the axial MRI. Similar figures were obtained for the CT and the other MRI scans. Interobserver variation: The average ratio between the volume derived by one observer for a particular scan and patient and the average volume was 0.95, 0.97, and 1.08 (SE 0.01) for the three observers, respectively. The 3D pattern of the overall observer variation (1 SD) for CT and axial MRI was similar and equal to 3.5 to 2.8 mm at the base of the seminal vesicles and 3 mm at the apex. CONCLUSION CT-derived prostate volumes are larger than MR derived volumes, especially toward the seminal vesicles and the apex of the prostate. This interscan variation was found to be larger than the interobserver variation. Using MRI for delineation of the prostate reduces the amount of irradiated rectal wall, and could reduce rectal and urological complications.


International Journal of Radiation Oncology Biology Physics | 1998

Estimation of the incidence of late bladder and rectum complications after high-dose (70-78 GY) conformal radiotherapy for prostate cancer, using dose-volume histograms

L.J. Boersma; Mandy van den Brink; Allison M. Bruce; Tarek Shouman; Luuk Gras; Annet te Velde; Joos V. Lebesque

PURPOSE To investigate whether Dose-Volume Histogram (DVH) parameters can be used to identify risk groups for developing late gastrointestinal (GI) and genitourinary (GU) complications after conformal radiotherapy for prostate cancer. METHODS AND MATERIALS DVH parameters were analyzed for 130 patients with localized prostate cancer, treated with conformal radiotherapy in a dose-escalating protocol (70-78 Gy, 2 Gy per fraction). The incidence of late (>6 months) GI and GU complications was classified using the RTOG/EORTC and the SOMA/LENT scoring system. In addition, GI complications were divided in nonsevere and severe (requiring one or more laser treatments or blood transfusions) rectal bleeding. The median follow-up time was 24 months. We investigated whether rectal and bladder wall volumes, irradiated to various dose levels, correlated with the observed actuarial incidences of GI and GU complications, using volume as a continuous variable. Subsequently, for each dose level in the DVH, the rectal wall volumes were dichotomized using different volumes as cutoff levels. The impact of the total radiation dose, and the maximum radiation dose in the rectal and bladder wall was analyzed as well. RESULTS The actuarial incidence at 2 years for GI complications > or =Grade II was 14% (RTOG/EORTC) or 20% (SOMA/LENT); for GU complications > or =Grade III 8% (RTOG/EORTC) or 21% (SOMA/LENT). Neither for GI complications > or =Grade II (RTOG/EORTC or SOMA/LENT), nor for GU complications > or =Grade III (RTOG/EORTC or SOMA/LENT), was a significant correlation found between any of the DVH parameters and the actuarial incidence of complications. For severe rectal bleeding (actuarial incidence at 2 years 3%), four consecutive volume cutoff levels were found, which significantly discriminated between high and low risk. A trend was observed that a total radiation dose > or = 74 Gy (or a maximum radiation dose in the rectal wall >75 Gy) resulted in a higher incidence of severe rectal bleeding (p = 0.07). CONCLUSIONS These data show that dose escalation up to 78 Gy, using a conformal technique, is feasible. However, these data have also demonstrated that the incidence of severe late rectal bleeding is increased above certain dose-volume thresholds.


International Journal of Radiation Oncology Biology Physics | 2003

Comparing different NTCP models that predict the incidence of radiation pneumonitis

Yvette Seppenwoolde; Joos V. Lebesque; Katrien De Jaeger; J. Belderbos; L.J. Boersma; Cees Schilstra; G.T. Henning; James A. Hayman; Mary K. Martel; Randall K. Ten Haken

Purpose: To compare different normal tissue complication probability (NTCP) models to predict the incidence of radiation pneumonitis on the basis of the dose distribution in the lung. Methods and Materials: The data from 382 breast cancer, malignant lymphoma, and inoperable non-small-cell lung cancer patients from two centers were studied. Radiation pneumonitis was scored using the Southwestern Oncology Group criteria. Dose-volume histograms of the lungs were calculated from the dose distributions that were corrected for dose per fraction effects. The dose-volume histogram of each patient was reduced to a single parameter using different local dose-effect relationships. Examples of single parameters were the mean lung dose (MLD) and the volume of lung receiving more than a threshold dose (VDth). The parameters for the different NTCP models were fit to patient data using a maximum likelihood analysis. Results: The best fit resulted in a linear local dose-effect relationship, with the MLD as the resulting single parameter. The relationship between the MLD and NTCP could be described with a median toxic dose (TD50) of 30.8 Gy and a steepness parameter m of 0.37. The best fit for the relationship between the VDth and the NTCP was obtained with a Dth of 13 Gy. The MLD model was found to be significantly better than the VDth model (p 35%. For arbitrary dose distributions, an estimate of the uncertainty in the NTCP could be determined using the probability distribution of the parameter values of the Lyman-Kutcher-Burman model. Conclusion: The maximum likelihood method revealed that the underlying local dose-effect relation for radiation pneumonitis was linear (the MLD model), rather than a step function (the VDth model). Thus, for the studied patient population, the MLD was the most accurate predictor for the incidence of radiation pneumonitis.PURPOSE To compare different normal tissue complication probability (NTCP) models to predict the incidence of radiation pneumonitis on the basis of the dose distribution in the lung. METHODS AND MATERIALS The data from 382 breast cancer, malignant lymphoma, and inoperable non-small-cell lung cancer patients from two centers were studied. Radiation pneumonitis was scored using the Southwestern Oncology Group criteria. Dose-volume histograms of the lungs were calculated from the dose distributions that were corrected for dose per fraction effects. The dose-volume histogram of each patient was reduced to a single parameter using different local dose-effect relationships. Examples of single parameters were the mean lung dose (MLD) and the volume of lung receiving more than a threshold dose (V(Dth)). The parameters for the different NTCP models were fit to patient data using a maximum likelihood analysis. RESULTS The best fit resulted in a linear local dose-effect relationship, with the MLD as the resulting single parameter. The relationship between the MLD and NTCP could be described with a median toxic dose (TD(50)) of 30.8 Gy and a steepness parameter m of 0.37. The best fit for the relationship between the V(Dth) and the NTCP was obtained with a D(th) of 13 Gy. The MLD model was found to be significantly better than the V(Dth) model (p <0.03). However, for 85% of the studied patients, the difference in NTCP calculated with both models was <10%, because of the high correlation between the two parameters. For dose distributions outside the range of the studied dose-volume histograms, the difference in NTCP, using the two models could be >35%. For arbitrary dose distributions, an estimate of the uncertainty in the NTCP could be determined using the probability distribution of the parameter values of the Lyman-Kutcher-Burman model. CONCLUSION The maximum likelihood method revealed that the underlying local dose-effect relation for radiation pneumonitis was linear (the MLD model), rather than a step function (the V(Dth) model). Thus, for the studied patient population, the MLD was the most accurate predictor for the incidence of radiation pneumonitis.


Radiotherapy and Oncology | 2001

Set-up verification using portal imaging; review of current clinical practice

Coen W. Hurkmans; P. Remeijer; Joos V. Lebesque; Ben J. Mijnheer

In this review of current clinical practice of set-up error verification by means of portal imaging, we firstly define the various types of set-up errors using a consistent nomenclature. The different causes of set-up errors are then summarized. Next, the results of a large number of studies regarding patient set-up verification are presented for treatments of patients with head and neck, prostate, pelvis, lung and breast cancer, as well as for mantle field/total body treatments. This review focuses on the more recent studies in order to assess the criteria for good clinical practice in patient positioning. The reported set-up accuracy varies widely, depending on the treatment site, method of immobilization and institution. The standard deviation (1 SD, mm) of the systematic and random errors for currently applied treatment techniques, separately measured along the three principle axes, ranges from 1.6-4.6 and 1.1-2.5 (head and neck), 1.0-3.8 and 1.2-3.5 (prostate), 1.1-4.7 and 1.1-4.9 (pelvis), 1.8-5.1 and 2.2-5.4 (lung), and 1.0-4.7 and 1.7-14.4 (breast), respectively. Recommendations for procedures to quantify, report and reduce patient set-up errors are given based on the studies described in this review. Using these recommendations, the systematic and random set-up errors that can be achieved in routine clinical practice can be less than 2.0 mm (1 SD) for head and neck, 2.5 mm (1 SD) for prostate, 3.0 mm (1 SD) for general pelvic and 3.5 mm (1 SD) for lung cancer treatment techniques.


International Journal of Radiation Oncology Biology Physics | 2008

Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer.

Abrahim Al-Mamgani; Wim L.J. van Putten; Wilma D. Heemsbergen; Geert J.L.H. van Leenders; Annerie Slot; Michel F.H. Dielwart; Luca Incrocci; Joos V. Lebesque

PURPOSE To update the analysis of the Dutch dose-escalation trial of radiotherapy for prostate cancer. PATIENTS AND METHODS A total of 669 patients with localized prostate cancer were randomly assigned to receive 68 or 78 Gy. The patients were stratified by age, institution, use of neoadjuvant or adjuvant hormonal therapy, and treatment group. The primary endpoint was freedom from failure (FFF), with failure defined as clinical or biochemical failure. Two definitions of biochemical failure were used: the American Society for Therapeutic Radiology and Oncology definition (three consecutive increases in prostate-specific antigen level) and the Phoenix definition (nadir plus 2 microe secondary endpoints were freedom from clinical failure, overall survival, and genitourinary and gastrointestinal toxicity. RESULTS After a median follow-up of 70 months, the FFF using the American Society for Therapeutic Radiology and Oncology definition was significantly better in the 78-Gy arm than in the 68-Gy arm (7-year FFF rate, 54% vs. 47%, respectively; p = 0.04). The FFF using the Phoenix definition was also significantly better in the 78-Gy arm than in the 68-Gy arm (7-year FFF rate, 56% vs. 45%, respectively; p = 0.03). However, no differences in freedom from clinical failure or overall survival were observed. The incidence of late Grade 2 or greater genitourinary toxicity was similar in both arms (40% and 41% at 7 years; p = 0.6). However, the cumulative incidence of late Grade 2 or greater gastrointestinal toxicity was increased in the 78-Gy arm compared with the 68-Gy arm (35% vs. 25% at 7 years; p = 0.04). CONCLUSION The results of our study have shown a statistically significant improvement in FFF in prostate cancer patients treated with 78 Gy but with a greater rate of late gastrointestinal toxicity.


International Journal of Radiation Oncology Biology Physics | 2002

Inclusion of geometric uncertainties in treatment plan evaluation.

Marcel van Herk; P. Remeijer; Joos V. Lebesque

PURPOSE To correctly evaluate realistic treatment plans in terms of absorbed dose to the clinical target volume (CTV), equivalent uniform dose (EUD), and tumor control probability (TCP) in the presence of execution (random) and preparation (systematic) geometric errors. MATERIALS AND METHODS The dose matrix is blurred with all execution errors to estimate the total dose distribution of all fractions. To include preparation errors, the CTV is randomly displaced (and optionally rotated) many times with respect to its planned position while computing the dose, EUD, and TCP for the CTV using the blurred dose matrix. Probability distributions of these parameters are computed by combining the results with the probability of each particular preparation error. We verified the method by comparing it with an analytic solution. Next, idealized and realistic prostate plans were tested with varying margins and varying execution and preparation error levels. RESULTS Probability levels for the minimum dose, computed with the new method, are within 1% of the analytic solution. The impact of rotations depends strongly on the CTV shape. A margin of 10 mm between the CTV and planning target volume is adequate for three-field prostate treatments given the accuracy level in our department; i.e., the TCP in a population of patients, TCP(pop), is reduced by less than 1% due to geometric errors. When reducing the margin to 6 mm, the dose must be increased from 80 to 87 Gy to maintain the same TCP(pop). Only in regions with a high-dose gradient does such a margin reduction lead to a decrease in normal tissue dose for the same TCP(pop). Based on a rough correspondence of 84% minimum dose with 98% EUD, a margin recipe was defined. To give 90% of patients at least 98% EUD, the planning target volume margin must be approximately 2.5 Sigma + 0.7 sigma - 3 mm, where Sigma and sigma are the combined standard deviations of the preparation and execution errors. This recipe corresponds accurately with 1% TCP(pop) loss for prostate plans with clinically reasonable values of Sigma and sigma. CONCLUSION The new method computes in a few minutes the influence of geometric errors on the statistics of target dose and TCP(pop) in clinical treatment plans. Too small margins lead to a significant loss of TCP(pop) that is difficult to compensate for by dose escalation.

Collaboration


Dive into the Joos V. Lebesque's collaboration.

Top Co-Authors

Avatar

J. Belderbos

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. van Herk

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Wilma D. Heemsbergen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

E. Damen

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

L.J. Boersma

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

P. Remeijer

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Yvette Seppenwoolde

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Floris J. Pos

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

M. Witte

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge