Joost Duvigneau
MESA+ Institute for Nanotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joost Duvigneau.
ACS Nano | 2010
Joost Duvigneau; Holger Schönherr; Gyula J. Vancso
Thermal transport around the nanoscale contact area between the heated atomic force microscopy (AFM) probe tip and the specimen under investigation is a central issue in scanning thermal microscopy (SThM). Polarized light microscopy and AFM imaging of the temperature-induced crystallization of poly(ethylene terephthalate) (PET) films in the region near the tip were used in this study to unveil the lateral heat transport. The radius of the observed lateral surface isotherm at 133 °C ranged from 2.2 ± 0.5 to 18.7 ± 0.5 μm for tip-polymer interface temperatures between 200 and 300 °C with contact times varying from 20 to 120 s, respectively. In addition, the heat transport into polymer films was assessed by measurements of the thermal expansion of poly(dimethyl siloxane) (PDMS) films with variable thickness on silicon supports. Our data showed that heat transport in the specimen normal (z) direction occurred to depths exceeding 1000 μm using representative non-steady-state SThM conditions (i.e., heating from 40 to 180 °C at a rate of 10 °C s(-1)). On the basis of the experimental results, a 1D steady-state model for heat transport was developed, which shows the temperature profile close to the tip-polymer contact. The model also indicates that ≤1% of the total power generated in the heater area, which is embedded in the cantilever end, is transported into the polymer through the tip-polymer contact interface. Our results complement recent efforts in the evaluation and improvement of existing theoretical models for thermal AFM, as well as advance further developments of SThM for nanoscale thermal materials characterization and/or manipulation via scanning thermal lithography (SThL).
Langmuir | 2008
Joost Duvigneau; Holger Schönherr; G. Julius Vancso
In this paper, we report on the local thermal activation of thin polymer films for area-selective surface chemical modification on micrometer and nanometer length scales. The thermally induced activation of tert-butyl ester moieties in polystyrene- block-poly(tert-butyl acrylate) (PS- b-PtBA) block copolymer films leads to the formation of pending carboxylic acid groups, which are among the versatile functionalities for subsequent bioconjugation. From Fourier transform infrared (FTIR) spectroscopic analyses, the apparent activation energy (Ea) for the tert-butyl ester deprotection in thin films was calculated to be 93 +/- 12 kJ/mol, which is in good agreement with values reported for the bulk. The availability of the deprotected carboxylic acid groups in subsequent wet chemical grafting reactions on neat thermolyzed films was confirmed by covalently immobilizing fluoresceinamine and amino end-functionalized poly(ethylene glycol) (PEG-NH2) using established 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) chemistry. Local thermal deprotection on micrometer and sub-micrometer length scales was achieved by scanning thermal microscopy using an atomic force microscope with heatable probe tips. Passivating PEG and fluoresceinamine layers were selectively covalently coupled to locally deprotected areas as small as 370 nm x 580 nm.
ACS Applied Materials & Interfaces | 2011
Joost Duvigneau; Holger Schönherr; G. Julius Vancso
In this paper, we report on the development of tailored polymer films for high-resolution atomic force microscopy based scanning thermal lithography (SThL). In particular, full control of surface chemical and topographical structuring was sought. Thin cross-linked films comprising poly(tert-butyl methacrylate) (MA(20)) or poly(tert-butyl acrylate) (A(20)) were prepared via UV initiated free radical polymerization. Thermogravimetric analysis (TGA) and FTIR spectroscopy showed that the heat-induced thermal decomposition of MA(20) by oxidative depolymerization is initially the primary reaction followed by tert-butyl ester thermolysis. By contrast, no significant depolymerization was observed for A(20). For A(20) and MA(20) (at higher temperatures and/or longer reaction times) the thermolysis of the tert-butyl ester liberates isobutylene and yields carboxylic acid groups, which react further intramolecularly to cyclic anhydrides. The values of the apparent activation energies (E(a)) for the thermolysis were calculated to be 125 ± 13 kJ mol(-1) and 116 ± 7 kJ mol(-1) for MA(20) and A(20), respectively. Both MA(20) and A(20) films showed improved thermomechanical stability during SThL compared to non cross-linked films. Carboxylic acid functionalized lines written by SThL in A(20) films had a typically ~10 times smaller width compared to those written in MA(20) films regardless of the tip radius of the heated probe and did not show any evidence for thermochemically or thermomechanically induced modification of film topography. These observations and the E(a) of 45 ± 3 kJ mol(-1) for groove formation in MA(20) estimated from the observed volume loss are attributed to oxidative thermal depolymerization during SThL of MA(20) films, which is considered to be the dominant reaction mechanism for MA(20). The smallest line width values obtained for MA(20) and A(20) films with SThL were 83 ± 7 nm and 21 ± 2 nm, whereas the depth of the lines was below 1 nm, respectively.
ACS Applied Materials & Interfaces | 2017
Shanqiu Liu; Rik Eijkelenkamp; Joost Duvigneau; G. Julius Vancso
Core–shell nanoparticles consisting of silica as core and surface-grafted poly(dimethylsiloxane) (PDMS) as shell with different diameters were prepared and used as heterogeneous nucleation agents to obtain CO2-blown poly(methyl methacrylate) (PMMA) nanocomposite foams. PDMS was selected as the shell material as it possesses a low surface energy and high CO2-philicity. The successful synthesis of core–shell nanoparticles was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The cell size and cell density of the PMMA micro- and nanocellular materials were determined by scanning electron microscopy. The cell nucleation efficiency using core–shell nanoparticles was significantly enhanced when compared to that of unmodified silica. The highest nucleation efficiency observed had a value of ∼0.5 for nanoparticles with a core diameter of 80 nm. The particle size dependence of cell nucleation efficiency is discussed taking into account line tension effects. Complete engulfment by the polymer matrix of particles with a core diameter below 40 nm at the cell wall interface was observed corresponding to line tension values of approximately 0.42 nN. This line tension significantly increases the energy barrier of heterogeneous nucleation and thus reduces the nucleation efficiency. The increase of the CO2 saturation pressure to 300 bar prior to batch foaming resulted in an increased line tension length. We observed a decrease of the heterogeneous nucleation efficiency for foaming after saturation with CO2 at 300 bar, which we attribute to homogenous nucleation becoming more favorable at the expense of heterogeneous nucleation in this case. Overall, it is shown that the contribution of line tension to the free energy barrier of heterogeneous foam cell nucleation must be considered to understand foaming of viscoelastic materials. This finding emphasizes the need for new strategies including the use of designer nucleating particles to enhance the foam cell nucleation efficiency.
Ultramicroscopy | 2015
Aysegul Cumurcu; Jordi Díaz; Ian D. Lindsay; Sissi de Beer; Joost Duvigneau; Peter Manfred Schön; G. Julius Vancso
Tip-enhanced nanoscale optical imaging techniques such as apertureless scanning near-field optical microscopy (a-SNOM) and scanning near-field ellipsometric microscopy (SNEM) applications can suffer from a steady degradation in performance due to adhesion of atmospheric contaminants to the metal coated tip. Here, we demonstrate that a self-assembled monolayer (SAM) of ethanethiol (EtSH) is an effective means of protecting gold-coated atomic force microscopy (AFM) probe tips from accumulation of surface contaminants during prolonged exposure to ambient air. The period over which they yield consistent and reproducible results for scanning near-field ellipsometric microscopy (SNEM) imaging is thus extended. SNEM optical images of a microphase separated polystyrene-block-poly (methylmethacrylate) (PS-b-PMMA) diblock copolymer film, which were captured with bare and SAM-protected gold-coated AFM probes, both immediately after coating and following five days of storage in ambient air, were compared. During this period the intensity of the optical signals from the untreated gold tip fell by 66%, while those from the SAM protected tip fell by 14%. Additionally, gold coated AFM probe tips were modified with various lengths of alkanethiols to measure the change in intensity variation in the optical images with SAM layer thickness. The experimental results were compared to point dipole model calculations. While a SAM of 1-dodecanethiol (DoSH) was found to strongly suppress field enhancement we find that it can be locally removed from the tip apex by deforming the molecules under load, restoring SNEM image contrast.
Macromolecules | 2018
Shanqiu Liu; Anupam Pandey; Joost Duvigneau; Julius Vancso; Jacco H. Snoeijer
Adhesion of nanoparticles to polymer films plays a key role in various polymer technologies. Here we report experiments that reveal how silica nanoparticles adhere to a viscoelastic PMMA film above the glass transition temperature. The polymer was swollen with CO2, closely matching the conditions of nanoparticle-nucleated polymer foaming. It is found that the degree by which the particles sink into the viscoelastic substrate is strongly size dependent and can even lead to complete engulfment for particles of diameter below 12 nm. These findings are explained quantitatively by a thermodynamic analysis, combining elasticity, capillary adhesion, and line tension. We argue that line tension, here proposed for the first time in elastic media, is responsible for the nanoparticle engulfment.
European Polymer Journal | 2015
Shanqiu Liu; Joost Duvigneau; Gyula J. Vancso
Advanced Functional Materials | 2010
Joost Duvigneau; Stijn Cornelissen; Núria Bardají Valls; Holger Schönherr; G. Julius Vancso
Polymer | 2016
Shanqiu Liu; Bram Zoetebier; Lars Hulsman; Yuanyuan Zhang; Joost Duvigneau; G. Julius Vancso
Archive | 2013
Paulus Hendricus Johannes Nederkoorn; Joost Duvigneau; Julius Vancso; Toine Wassing