Joost H.M. van Delft
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joost H.M. van Delft.
Nature Biotechnology | 2014
Charles Wang; Binsheng Gong; Pierre R. Bushel; Jean Thierry-Mieg; Danielle Thierry-Mieg; Joshua Xu; Hong Fang; Huixiao Hong; Jie Shen; Zhenqiang Su; Joe Meehan; Xiaojin Li; Lu Yang; Haiqing Li; Paweł P. Łabaj; David P. Kreil; Dalila B. Megherbi; Stan Gaj; Florian Caiment; Joost H.M. van Delft; Jos Kleinjans; Andreas Scherer; Viswanath Devanarayan; Jian Wang; Yong Yang; Hui-Rong Qian; Lee Lancashire; Marina Bessarabova; Yuri Nikolsky; Cesare Furlanello
The concordance of RNA-sequencing (RNA-seq) with microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed using a range of chemical treatment conditions. Here we use a comprehensive study design to generate Illumina RNA-seq and Affymetrix microarray data from the same liver samples of rats exposed in triplicate to varying degrees of perturbation by 27 chemicals representing multiple modes of action (MOAs). The cross-platform concordance in terms of differentially expressed genes (DEGs) or enriched pathways is linearly correlated with treatment effect size (R20.8). Furthermore, the concordance is also affected by transcript abundance and biological complexity of the MOA. RNA-seq outperforms microarray (93% versus 75%) in DEG verification as assessed by quantitative PCR, with the gain mainly due to its improved accuracy for low-abundance transcripts. Nonetheless, classifiers to predict MOAs perform similarly when developed using data from either platform. Therefore, the endpoint studied and its biological complexity, transcript abundance and the genomic application are important factors in transcriptomic research and for clinical and regulatory decision making.
Toxicological Sciences | 2010
Danyel Jennen; Christina Magkoufopoulou; Hans Ketelslegers; Marcel van Herwijnen; Jos Kleinjans; Joost H.M. van Delft
Direct comparison of the hepatoma cell lines HepG2 and HepaRG has previously been performed by only evaluating a limited set of genes or proteins. In this study, we examined the whole-genome gene expression of both cell lines before and after exposure to the genotoxic (GTX) carcinogens aflatoxin B1 and benzo[a]pyrene and the nongenotoxic (NGTX) carcinogens cyclosporin A, 17beta-estradiol, and 2,3,7,8-tetrachlorodibenzo-para-dioxin for 12 and 48 h. Before exposure, this analysis revealed an extensive network of genes and pathways, which were regulated differentially for each cell line. The comparison of the basal gene expression between HepG2, HepaRG, primary human hepatocytes (PHH), and liver clearly showed that HepaRG resembles PHH and liver the most. After exposure to the GTX and NGTX carcinogens, for both cell lines, common pathways were found that are important in carcinogenesis, for example, cell cycle regulation and apoptosis. However, also clear differences between exposed HepG2 and HepaRG were observed, and these are related to common metabolic processes, immune response, and transcription processes. Furthermore, HepG2 performs better in discriminating between GTX and NGTX carcinogens. In conclusion, these results have shown that HepaRG is a more suited in vitro liver model for biological interpretations of the effects of exposure to chemicals, whereas HepG2 is a more promising in vitro liver model for classification studies using the toxicogenomics approach. Although, it should be noted that only five carcinogens were used in this study.
Toxicological Sciences | 2011
Anke Van Summeren; Johan Renes; Freek G. Bouwman; Jean-Paul Noben; Joost H.M. van Delft; Jos Kleinjans; Edwin C. M. Mariman
Unexpected hepatotoxicity is one of the major reasons of drugs failing in clinical trials. This emphasizes the need for new screening methods that address toxicological hazards early in the drug discovery process. Here, proteomics techniques were used to gain further insight into the mechanistic processes of the hepatotoxic compounds. Drug-induced hepatotoxicity is mainly divided in hepatic steatosis, cholestasis, or necrosis. For each class, a compound was selected, respectively amiodarone, cyclosporin A, and acetaminophen. The changes in protein expressions in HepG2, after exposure to these test compounds, were studied using quantitative two-dimensional differential gel electrophoresis. Identification of differentially expressed proteins was performed by Maldi-TOF/TOF MS and liquid chromatography-tandem mass spectrometry. In this study, 254 differentially expressed protein spots were detected in a two-dimensional proteome map from which 86 were identified, showing that the proteome of HepG2 cells is responsive to hepatotoxic compounds. cyclosporin A treatment was responsible for most differentially expressed proteins and could be discriminated in the hierarchical clustering analysis. The identified differential proteins show that cyclosporin A may induce endoplasmic reticulum (ER) stress and disturbs the ER-Golgi transport, with an altered vesicle-mediated transport and protein secretion as result. Moreover, the differential protein pattern seen after cyclosporin A treatment can be related to cholestatic mechanisms. Therefore, our findings indicate that the HepG2 in vitro cell system has distinctive characteristics enabling the assessment of cholestatic properties of novel compounds at an early stage of drug discovery.
BMC Genomics | 2011
Ainhoa Ruiz-Aracama; Ad A. C. M. Peijnenburg; Jos Kleinjans; Danyel Jennen; Joost H.M. van Delft; Caroline Hellfrisch; Arjen Lommen
BackgroundIn vitro cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied in vitro but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on in vitro systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the in vitro model system and model toxicant, respectively.ResultsThe study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD.ConclusionsUntargeted profiling of the polar and apolar metabolites of in vitro cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.
Environmental Health Perspectives | 2005
Raffaella Corvi; Hans Jürgen Ahr; Sylvio Albertini; David H. Blakey; Libero Clerici; Sandra Coecke; George R. Douglas; Laura Gribaldo; John P. Groten; Bernd Haase; Karen Hamernik; Thomas Hartung; Tohru Inoue; Ian Indans; Daniela Maurici; George Orphanides; Diana Rembges; Susanna-Assunta Sansone; Jason R. Snape; Eisaku Toda; Weida Tong; Joost H.M. van Delft; Brenda Weis; Leonard M. Schechtman
This is the report of the first workshop “Validation of Toxicogenomics-Based Test Systems” held 11–12 December 2003 in Ispra, Italy. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and organized jointly by ECVAM, the U.S. Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), and the National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM). The primary aim of the workshop was for participants to discuss and define principles applicable to the validation of toxicogenomics platforms as well as validation of specific toxicologic test methods that incorporate toxicogenomics technologies. The workshop was viewed as an opportunity for initiating a dialogue between technologic experts, regulators, and the principal validation bodies and for identifying those factors to which the validation process would be applicable. It was felt that to do so now, as the technology is evolving and associated challenges are identified, would be a basis for the future validation of the technology when it reaches the appropriate stage. Because of the complexity of the issue, different aspects of the validation of toxicogenomics-based test methods were covered. The three focus areas include a) biologic validation of toxicogenomics-based test methods for regulatory decision making, b) technical and bioinformatics aspects related to validation, and c) validation issues as they relate to regulatory acceptance and use of toxicogenomics-based test methods. In this report we summarize the discussions and describe in detail the recommendations for future direction and priorities.
Toxicological Sciences | 2009
K. Mathijs; Karen Brauers; Danyel Jennen; André Boorsma; Marcel van Herwijnen; Ralph W.H. Gottschalk; Jos Kleinjans; Joost H.M. van Delft
Assessing the potential carcinogenicity of chemicals for humans represents an ongoing challenge. Chronic rodent bioassays predict human cancer risk at only limited reliability and are simultaneously expensive and long lasting. In order to seek for alternatives, the ability of a transcriptomics-based primary mouse hepatocyte model to classify carcinogens by their modes of action was evaluated. As it is obvious that exposure will induce a cascade of gene expression modifications, in particular, the influence of exposure time in vitro on discriminating genotoxic (GTX) carcinogens from nongenotoxic (NGTX) carcinogens class discrimination was investigated. Primary mouse hepatocytes from male C57Bl6 mice were treated for 12, 24, 36, and 48 h with two GTX and two NGTX carcinogens. For validation, two additional GTX compounds were studied at 24 and 48 h. Immunostaining of gammaH2AX foci was applied in order to phenotypically verify DNA damage. It confirmed significant induction of DNA damage after treatment with GTX compounds but not with NGTX compounds. Whole-genome gene expression modifications were analyzed by means of Affymetrix microarrays. When using differentially expressed genes from data sets normalized by Robust Multi-array Average, the two classes and various compounds were better separated from each other by hierarchical clustering when increasing the treatment period. Discrimination of GTX and NGTX carcinogens by Prediction Analysis of Microarray improved with time and resulted in correct classification of the validation compounds. The present study shows that gene expression profiling in primary mouse hepatocytes is promising for discriminating GTX from NGTX compounds and that this discrimination improves with increasing treatment period.
Mutation Research-reviews in Mutation Research | 2008
Mathieu Vinken; Tatyana Y. Doktorova; Heidrun Ellinger-Ziegelbauer; Hans-Jürgen Ahr; Edward A. Lock; Paul L. Carmichael; Erwin Ludo Roggen; Joost H.M. van Delft; Jos Kleinjans; José V. Castell; Roque Bort; Teresa Donato; Michael P. Ryan; Raffaella Corvi; Hector C. Keun; Timothy M. D. Ebbels; Toby J. Athersuch; Susanna-Assunta Sansone; Philippe Rocca-Serra; R.H. Stierum; Paul Jennings; Walter Pfaller; Hans Gmuender; Tamara Vanhaecke; Vera Rogiers
Recent changes in the European legislation of chemical-related substances have forced the scientific community to speed up the search for alternative methods that could partly or fully replace animal experimentation. The Sixth Framework Program project carcinoGENOMICS was specifically raised to develop omics-based in vitro screens for testing the carcinogenic potential of chemical compounds in a pan-European context. This paper provides an in-depth analysis of the complexity of choosing suitable reference compounds used for creating and fine-tuning the in vitro carcinogenicity assays. First, a number of solid criteria for the selection of the model compounds are defined. Secondly, the strategy followed, including resources consulted, is described and the selected compounds are briefly illustrated. Finally, limitations and problems encountered during the selection procedure are discussed. Since selecting an appropriate set of chemicals is a frequent impediment in the early stages of similar research projects, the information provided in this paper might be extremely valuable.
Toxicological Sciences | 2011
Reha Yildirimman; Gabriella Brolén; Mireia Vilardell; Gustav Eriksson; Jane Synnergren; Hans Gmuender; Atanas Kamburov; Magnus Ingelman-Sundberg; José V. Castell; Agustín Lahoz; Jos Kleinjans; Joost H.M. van Delft; Petter Björquist; Ralf Herwig
Hepatocyte-like cells derived from the differentiation of human embryonic stem cells (hES-Hep) have potential to provide a human relevant in vitro test system in which to evaluate the carcinogenic hazard of chemicals. In this study, we have investigated this potential using a panel of 15 chemicals classified as noncarcinogens, genotoxic carcinogens, and nongenotoxic carcinogens and measured whole-genome transcriptome responses with gene expression microarrays. We applied an ANOVA model that identified 592 genes highly discriminative for the panel of chemicals. Supervised classification with these genes achieved a cross-validation accuracy of > 95%. Moreover, the expression of the response genes in hES-Hep was strongly correlated with that in human primary hepatocytes cultured in vitro. In order to infer mechanistic information on the consequences of chemical exposure in hES-Hep, we developed a computational method that measures the responses of biochemical pathways to the panel of treatments and showed that these responses were discriminative for the three toxicity classes and linked to carcinogenesis through p53, mitogen-activated protein kinases, and apoptosis pathway modules. It could further be shown that the discrimination of toxicity classes was improved when analyzing the microarray data at the pathway level. In summary, our results demonstrate, for the first time, the potential of human embryonic stem cell--derived hepatic cells as an in vitro model for hazard assessment of chemical carcinogenesis, although it should be noted that more compounds are needed to test the robustness of the assay.
Carcinogenesis | 2008
Danitsja M. van Leeuwen; Marie Pedersen; Peter J. M. Hendriksen; André Boorsma; Marcel van Herwijnen; Ralph W.H. Gottschalk; Micheline Kirsch-Volders; Lisbeth E. Knudsen; Radim J. Sram; Edyta Bajak; Joost H.M. van Delft; Jos Kleinjans
Differences in biological responses to exposure to hazardous airborne substances between children and adults have been reported, suggesting children to be more susceptible. Aim of this study was to improve our understanding of differences in susceptibility in cancer risk associated with air pollution by comparing genome-wide gene expression profiles in peripheral blood of children and their parents. Gene expression analysis was performed in blood from children and parents living in two different regions in the Czech Republic with different levels of air pollution. Data were analyzed by two different approaches: one method first selected significantly differentially expressed genes and analyzed these gene lists for overrepresented biological processes, whereas the other applied the T-profiler tool to directly perform pathway analyses on the total gene set without preselection of significantly modulated gene expressions. In addition, gene expressions in both children and adults were investigated for associations with micronuclei frequencies. Both analysis approaches returned considerably more genes or gene groups and pathways that significantly differed between children from both regions than between parents. Very little overlap was observed between children and adults. The two most important biological processes or molecular functions significantly modulated in children, but not in adults, are nucleosome and immune response related. Our study suggests differences between children and adults in relation to air pollution exposure at the transcriptome level. The findings underline the necessity of implementing environmental health policy measures specifically for protecting childrens health.
Food and Chemical Toxicology | 2011
Solvor B. Stølevik; Unni Cecilie Nygaard; Ellen Namork; Margaretha Haugen; Helen Engelstad Kvalem; Helle Margrete Meltzer; Jan Alexander; Joost H.M. van Delft; Henk van Loveren; Martinus Løvik; Berit Granum
The birth cohort BraMat (n = 205; a sub-cohort of the Norwegian Mother and Child Cohort Study (MoBa) conducted by the Norwegian Institute of Public Health) was established to study whether prenatal exposure to toxicants from the maternal diet affects immunological health outcomes in children. We here report on the environmental pollutants polychlorinated biphenyls (PCBs) and dioxins, as well as acrylamide generated in food during heat treatment. The frequency of common infections, eczema or itchiness, and periods of more than 10 days of dry cough, chest tightness or wheeze (called wheeze) in the children during the first year of life was assessed by questionnaire data (n = 195). Prenatal dietary exposure to the toxicants was estimated using a validated food frequency questionnaire from MoBa. Prenatal exposure to PCBs and dioxins was found to be associated with increased risk of wheeze and exanthema subitum, and also with increased frequency of upper respiratory tract infections. We found no associations between prenatal exposure to acrylamide and the health outcomes investigated. Our results suggest that prenatal dietary exposure to dioxins and PCBs may increase the risk of wheeze and infectious diseases during the first year of life.