Joost H. Weijs
University of Twente
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joost H. Weijs.
Physical Review Letters | 2013
Joost H. Weijs; Detlef Lohse
We present a theoretical model for the experimentally found but counterintuitive exceptionally long lifetime of surface nanobubbles. We can explain why, under normal experimental conditions, surface nanobubbles are stable for many hours or even up to days rather than the expected microseconds. The limited gas diffusion through the water in the far field, the cooperative effect of nanobubble clusters, and the pinned contact line of the nanobubbles lead to the slow dissolution rate.
Physics of Fluids | 2011
Joost H. Weijs; Antonin Marchand; Bruno Andreotti; Detlef Lohse; Jacco H. Snoeijer
The existence and origin of line tension has remained controversial in literature. To address this issue, we compute the shape of Lennard-Jones nanodrops using molecular dynamics and compare them to density functional theory in the approximation of the sharp kink interface. We show that the deviation from Young’s law is very small and would correspond to a typical line tension length scale (defined as line tension divided by surface tension) similar to the molecular size and decreasing with Young’s angle. We propose an alternative interpretation based on the geometry of the interface at the molecular scale
Physical Review E | 2012
Koen G. Winkels; Joost H. Weijs; Antonin Eddi; Jacco H. Snoeijer
Liquid drops start spreading directly after coming into contact with a partially wetting substrate. Although this phenomenon involves a three-phase contact line, the spreading motion is very fast. We study the initial spreading dynamics of low-viscosity drops using two complementary methods: molecular dynamics simulations and high-speed imaging. We access previously unexplored length and time scales and provide a detailed picture on how the initial contact between the liquid drop and the solid is established. Both methods unambiguously point toward a spreading regime that is independent of wettability, with the contact radius growing as the square root of time.
American Journal of Physics | 2011
Antonin Marchand; Joost H. Weijs; Jacco H. Snoeijer; Bruno Andreotti
A paperclip can float on water. Drops of mercury do not spread on a surface. These capillary phenomena are macroscopic manifestations of molecular interactions and can be explained in terms of surface tension. We address several conceptual questions that are often encountered when teaching capillarity and provide a perspective that reconciles the macroscopic viewpoints from thermodynamics and fluid mechanics and the microscopic perspective from statistical physics
ChemPhysChem | 2012
Joost H. Weijs; James Richard Thorley Seddon; Detlef Lohse
Using molecular dynamics, we study the nucleation and stability of bulk nanobubble clusters. We study the formation, growth, and final size of bulk nanobubbles. We find that, as long as the bubble-bubble interspacing is small enough, bulk nanobubbles are stable against dissolution. Simple diffusion calculations provide an excellent match with the simulation results, giving insight into the reason for the stability: nanobubbles in a cluster of bulk nanobubbles protect each other from diffusion by a shielding effect.
Physical Review Letters | 2012
Joost H. Weijs; Jacco H. Snoeijer; Detlef Lohse
We study surface nanobubbles using molecular dynamics simulation of ternary (gas, liquid, solid) systems of Lennard-Jones fluids. They form for a sufficiently low gas solubility in the liquid, i.e., for a large relative gas concentration. For a strong enough gas-solid attraction, the surface nanobubble is sitting on a gas layer, which forms in between the liquid and the solid. This gas layer is the reason for the universality of the contact angle, which we calculate from the microscopic parameters. Under the present equilibrium conditions the nanobubbles dissolve within less of a microsecond, consistent with the view that the experimentally found nanobubbles are stabilized by a nonequilibrium mechanism.
Journal of Fluid Mechanics | 2014
Luuk A. Lubbers; Joost H. Weijs; Lorenzo Botto; Siddhartha Das; Bruno Andreotti; Jacco H. Snoeijer
The equilibrium shape of liquid drops on elastic substrates is determined by minimizing elastic and capillary free energies, focusing on thick incompressible substrates. The problem is governed by three length scales: the size of the drop R, the molecular size a and the ratio of surface tension to elastic modulus γ/E. We show that the contact angles undergo two transitions upon changing the substrate from rigid to soft. The microscopic wetting angles deviate from Young’s law when γ/(Ea)≫1, while the apparent macroscopic angle only changes in the very soft limit γ/(ER)≫1. The elastic deformations are worked out for the simplifying case where the solid surface energy is assumed to be constant. The total free energy turns out to be lower on softer substrates, consistent with recent experiments.
Soft Matter | 2013
Joost H. Weijs; Bruno Andreotti; Jacobus Hendrikus Snoeijer
The capillary forces exerted by liquid drops and bubbles on a soft solid are directly measured using molecular dynamics simulations. The force on the solid by the liquid near the contact line is neither oriented along the liquid vapor interface nor perpendicular to the solid surface, as usually assumed, but points towards the liquid. It is shown that the elastic deformations induced by this force can only be explained if, in contrast to an incompressible liquid, the surface stress is different from the surface energy. Using thermodynamic variations we show that the surface stress and the surface energy can both be determined accurately by measuring the deformation of a slender body plunged in a liquid. The results obtained from molecular dynamics fully confirm those recently obtained experimentally [Marchand et al., Phys. Rev. Lett., (2012), 108, 094301] for an elastomeric wire.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Stefan Karpitschka; Anupam Pandey; Luuk A. Lubbers; Joost H. Weijs; Lorenzo Botto; Siddhartha Das; Bruno Andreotti; Jacco H. Snoeijer
Significance The Cheerios effect is the attraction of solid particles floating on liquids, mediated by surface tension forces. We demonstrate experimentally that a similar interaction can also occur for the inverse case, liquid particles on the surface of solids, provided that the solid is sufficiently soft. Remarkably, depending on the thickness of the solid layer, the interaction can be either purely attractive or become repulsive. A theoretical model, in excellent agreement with the experimental data, shows that the interaction requires both elasticity and capillarity. Interactions between objects on soft substrates could play an important role in phenomena of cell–cell interaction and cell adhesion to biological tissues, and be exploited to engineer soft smart surfaces for controlled drop coalescence and colloidal assembly. Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop–drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the “Cheerios effect.” The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.
Physical Review Letters | 2015
Joost H. Weijs; Raphaël Jeanneret; Remi Dreyfus; Denis Bartolo
We report the self-organization of microfluidic emulsions into anomalously homogeneous structures. Upon periodic driving confined emulsions undergo a first-order transition from a reversible to an irreversible dynamics. We evidence that this dynamical transition is accompanied by structural changes at all scales yielding macroscopic yet finite hyperuniform structures. Numerical simulations are performed to single out the very ingredients responsible for the suppression of density fluctuations. We show that, as opposed to equilibrium systems, the long-range nature of the hydrodynamic interactions are not required for the formation of hyperuniform patterns, thereby suggesting a robust relation between reversibility and hyperuniformity which should hold in a broad class of periodically driven materials.