Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joost VandeVondele is active.

Publication


Featured researches published by Joost VandeVondele.


Computer Physics Communications | 2005

Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach

Joost VandeVondele; Matthias Krack; Fawzi Mohamed; Michele Parrinello; Thomas Chassaing; Jürg Hutter

Abstract We present the Gaussian and plane waves (GPW) method and its implementation in Quickstep which is part of the freely available program package CP2K. The GPW method allows for accurate density functional calculations in gas and condensed phases and can be effectively used for molecular dynamics simulations. We show how derivatives of the GPW energy functional, namely ionic forces and the Kohn–Sham matrix, can be computed in a consistent way. The computational cost of computing the total energy and the Kohn–Sham matrix is scaling linearly with the system size, even for condensed phase systems of just a few tens of atoms. The efficiency of the method allows for the use of large Gaussian basis sets for systems up to 3000 atoms, and we illustrate the accuracy of the method for various basis sets in gas and condensed phases. Agreement with basis set free calculations for single molecules and plane wave based calculations in the condensed phase is excellent. Wave function optimisation with the orbital transformation technique leads to good parallel performance, and outperforms traditional diagonalisation methods. Energy conserving Born–Oppenheimer dynamics can be performed, and a highly efficient scheme is obtained using an extrapolation of the density matrix. We illustrate these findings with calculations using commodity PCs as well as supercomputers.


Journal of Chemical Physics | 2007

Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases

Joost VandeVondele; Jürg Hutter

We present a library of Gaussian basis sets that has been specifically optimized to perform accurate molecular calculations based on density functional theory. It targets a wide range of chemical environments, including the gas phase, interfaces, and the condensed phase. These generally contracted basis sets, which include diffuse primitives, are obtained minimizing a linear combination of the total energy and the condition number of the overlap matrix for a set of molecules with respect to the exponents and contraction coefficients of the full basis. Typically, for a given accuracy in the total energy, significantly fewer basis functions are needed in this scheme than in the usual split valence scheme, leading to a speedup for systems where the computational cost is dominated by diagonalization. More importantly, binding energies of hydrogen bonded complexes are of similar quality as the ones obtained with augmented basis sets, i.e., have a small (down to 0.2 kcal/mol) basis set superposition error, and the monomers have dipoles within 0.1 D of the basis set limit. However, contrary to typical augmented basis sets, there are no near linear dependencies in the basis, so that the overlap matrix is always well conditioned, also, in the condensed phase. The basis can therefore be used in first principles molecular dynamics simulations and is well suited for linear scaling calculations.


Wiley Interdisciplinary Reviews: Computational Molecular Science | 2014

cp2k: atomistic simulations of condensed matter systems

Jürg Hutter; Marcella Iannuzzi; Florian Schiffmann; Joost VandeVondele

cp2k has become a versatile open‐source tool for the simulation of complex systems on the nanometer scale. It allows for sampling and exploring potential energy surfaces that can be computed using a variety of empirical and first principles models. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern and massively parallel hardware. This review briefly summarizes the main capabilities and illustrates with recent applications the science cp2k has enabled in the field of atomistic simulation. WIREs Comput Mol Sci 2014, 4:15–25. doi: 10.1002/wcms.1159


Journal of Chemical Physics | 2002

A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations

Alessandro Laio; Joost VandeVondele; Ursula Rothlisberger

We present a fully Hamiltonian and computationally efficient scheme to include the electrostatic effects due to the classical environment in a Car–Parrinello mixed quantum Mechanics/molecular mechanics (QM/MM) method. The polarization due to the MM atoms close to the quantum system is described by a Coulombic potential modified at short range. We show that the functional form of this potential has to be chosen carefully in order to obtain the correct interaction properties and to prevent an unphysical escape of the electronic density to the MM atoms (the so-called spill-out effect). The interaction between the QM system and the more distant MM atoms is modeled by a Hamiltonian term explicitly coupling the multipole moments of the quantum charge distribution with the classical point charges. Our approach remedies some of the well known deficiencies of current electrostatic coupling schemes in QM/MM methods, allowing molecular dynamics simulations of mixed systems within a fully consistent and energy conser...


Journal of Chemical Physics | 2005

The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water

Joost VandeVondele; Fawzi Mohamed; Matthias Krack; Jürg Hutter; Michiel Sprik; Michele Parrinello

The performance of density functional theory methods for the modeling of condensed aqueous systems is hard to predict and validation by ab initio molecular simulation of liquid water is absolutely necessary. In order to assess the reliability of these tests, the effect of temperature on the structure and dynamics of liquid water has been characterized with 16 simulations of 20 ps in the temperature range of 280-380 K. We find a pronounced influence of temperature on the pair correlation functions and on the diffusion constant including nonergodic behavior on the time scale of the simulation in the lower temperature range (which includes ambient temperature). These observations were taken into account in a consistent comparison of a series of density functionals (BLYP, PBE, TPSS, OLYP, HCTH120, HCTH407). All simulations were carried out using an ab initio molecular dynamics approach in which wave functions are represented using Gaussians and the density is expanded in an auxiliary basis of plane waves. Whereas the first three functionals show similar behavior, it is found that the latter three functionals yield more diffusive dynamics and less structure.


Journal of Physical Chemistry B | 2009

Isobaric−Isothermal Molecular Dynamics Simulations Utilizing Density Functional Theory: An Assessment of the Structure and Density of Water at Near-Ambient Conditions

Jochen Schmidt; Joost VandeVondele; I-F W. Kuo; Daniel Sebastiani; Joern L. Siepmann; Juerg Hutter; Christopher J. Mundy

We present herein a comprehensive density functional theory study toward assessing the accuracy of two popular gradient-corrected exchange correlation functionals on the structure and density of liquid water at near ambient conditions in the isobaric-isothermal ensemble. Our results indicate that both PBE and BLYP functionals under predict the density and over structure the liquid. Adding the dispersion correction due to Grimme (1, 2) improves the predicted densities for both BLYP and PBE in a significant manner. Moreover, the addition of the dispersion correction for BLYP yields an oxygen-oxygen radial distribution function in excellent agreement with experiment. Thus, we conclude that one can obtain a very satisfactory model for water using BLYP and a correction for dispersion.


Journal of Chemical Physics | 2003

An efficient orbital transformation method for electronic structure calculations

Joost VandeVondele; Jürg Hutter

An efficient method for optimizing single-determinant wave functions of medium and large systems is presented. It is based on a minimization of the energy functional using a new set of variables to perform orbital transformations. With this method convergence of the wave function is guaranteed. Preconditioners with different computational cost and efficiency have been constructed. Depending on the preconditioner, the method needs a number of iterations that is very similar to the established diagonalization–DIIS approach, in cases where the latter converges well. Diagonalization of the Kohn–Sham matrix can be avoided and the sparsity of the overlap and Kohn–Sham matrix can be exploited. If sparsity is taken into account, the method scales as O(MN2), where M is the total number of basis functions and N is the number of occupied orbitals. The relative performance of the method is optimal for large systems that are described with high quality basis sets, and for which the density matrices are not yet sparse....


Journal of Chemical Theory and Computation | 2010

Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations.

Manuel Guidon; Jürg Hutter; Joost VandeVondele

The calculation of Hartree-Fock exchange (HFX) is computationally demanding for large systems described with high-quality basis sets. In this work, we show that excellent performance and good accuracy can nevertheless be obtained if an auxiliary density matrix is employed for the HFX calculation. Several schemes to derive an auxiliary density matrix from a high-quality density matrix are discussed. Key to the accuracy of the auxiliary density matrix methods (ADMM) is the use of a correction based on standard generalized gradient approximations for HFX. ADMM integrates seamlessly in existing HFX codes and, in particular, can be employed in linear scaling implementations. Demonstrating the performance of the method, the effect of HFX on the structure of liquid water is investigated in detail using Born-Oppenheimer molecular dynamics simulations (300 ps) of a system of 64 molecules. Representative for large systems are calculations on a solvated protein (Rubredoxin), for which ADMM outperforms the corresponding standard HFX implementation by approximately a factor 20.


Journal of Chemical Physics | 2008

Ab initio molecular dynamics using hybrid density functionals

Manuel Guidon; Florian Schiffmann; Jürg Hutter; Joost VandeVondele

Ab initio molecular dynamics simulations with hybrid density functionals have so far found little application due to their computational cost. In this work, an implementation of the Hartree-Fock exchange is presented that is specifically targeted at ab initio molecular dynamics simulations of medium sized systems. We demonstrate that our implementation, which is available as part of the CP2K/Quickstep program, is robust and efficient. Several prescreening techniques lead to a linear scaling cost for integral evaluation and storage. Integral compression techniques allow for in-core calculations on systems containing several thousand basis functions. The massively parallel implementation respects integral symmetry and scales up to hundreds of CPUs using a dynamic load balancing scheme. A time-reversible multiple time step scheme, exploiting the difference in computational efficiency between hybrid and local functionals, brings further time savings. With extensive simulations of liquid water, we demonstrate the ability to perform, for several tens of picoseconds, ab initio molecular dynamics based on hybrid functionals of systems in the condensed phase containing a few thousand Gaussian basis functions.


Journal of Chemical Theory and Computation | 2009

Robust Periodic Hartree−Fock Exchange for Large-Scale Simulations Using Gaussian Basis Sets

Manuel Guidon; Jürg Hutter; Joost VandeVondele

Hartree-Fock exchange with a truncated Coulomb operator has recently been discussed in the context of periodic plane-waves calculations [Spencer, J.; Alavi, A. Phys. Rev. B: Solid State, 2008, 77, 193110]. In this work, this approach is extended to Gaussian basis sets, leading to a stable and accurate procedure for evaluating Hartree-Fock exchange at the Γ-point. Furthermore, it has been found that standard hybrid functionals can be transformed into short-range functionals without loss of accuracy. The well-defined short-range nature of the truncated exchange operator can naturally be exploited in integral screening procedures and makes this approach interesting for both condensed phase and gas phase systems. The presented Hartree-Fock implementation is massively parallel and scales up to ten thousands of cores. This makes it feasible to perform highly accurate calculations on systems containing thousands of atoms or ten thousands of basis functions. The applicability of this scheme is demonstrated by calculating the cohesive energy of a LiH crystal close to the Hartree-Fock basis set limit and by performing an electronic structure calculation of a complete protein (rubredoxin) in solution with a large and flexible basis set.

Collaboration


Dive into the Joost VandeVondele's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ursula Rothlisberger

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Laio

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Cheng

University of Aberdeen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge