Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joran Verspreet is active.

Publication


Featured researches published by Joran Verspreet.


Molecular Nutrition & Food Research | 2011

Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence

Bram Damen; Joran Verspreet; Annick Pollet; Willem F. Broekaert; Jan A. Delcour; Christophe M. Courtin

SCOPE Cereal arabinoxylan (AX) is one of the main dietary fibers in a balanced human diet. To gain insight into the importance of structural features of AX for their prebiotic potential and intestinal fermentation properties, a rat trial was performed. METHODS AND RESULTS A water unextractable AX-rich preparation (WU-AX, 40% purity), water extractable AX (WE-AX, 81% purity), AX oligosaccharides (AXOS, 79% purity) and combinations thereof were included in a standardized diet at a 5% AX level. WU-AX was only partially fermented in the ceco-colon and increased the level of butyrate and of butyrate producing Roseburia/E. rectale spp. Extensive fermentation of WE-AX and/or AXOS reduced the pH, suppressed relevant markers of the proteolytic breakdown and induced a selective bifidogenic response. Compared with WE-AX, AXOS showed a slightly less pronounced effect in the colon as its fermentation was virtually complete in the cecum. Combining WU-AX and AXOS caused a striking synergistic increase in cecal butyrate levels. WU-AX, WE-AX and AXOS together combined a selective bifidogenic effect in the colon with elevated butyrate levels, a reduced pH and suppressed proteolytic metabolites. CONCLUSION The prebiotic potential and fermentation characteristics of cereal AX depend strongly on their structural properties and joint presence.


Journal of Agricultural and Food Chemistry | 2012

A Simple and Accurate Method for Determining Wheat Grain Fructan Content and Average Degree of Polymerization

Joran Verspreet; Annick Pollet; Sven Cuyvers; Rudy Vergauwen; Wim Van den Ende; Jan A. Delcour; Christophe M. Courtin

An improved method for the measurement of fructans in wheat grains is presented. A mild acid treatment is used for fructan hydrolysis, followed by analysis of the released glucose and fructose with high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Not only the amount of fructose set free from fructans but also the released glucose can be quantified accurately, allowing determination of the average degree of polymerization of fructans (DP(av)). Application of the mild acid treatment to different grain samples demonstrated that a correction should be made for the presence of sucrose and raffinose, but not for stachyose or higher raffinose oligosaccharides. The fructan content and DP(av) of spelt flour, wheat flour, and whole wheat flour were 0.6%, 1.2%, and 1.8% of the total weight and 4, 5, and 6, respectively. Validation experiments demonstrate that the proposed quantification method is accurate and repeatable and that also the DP(av) determination is precise.


Comprehensive Reviews in Food Science and Food Safety | 2016

Wheat (Triticum aestivum L.) Bran in Bread Making: A Critical Review

Sami Hemdane; Pieter Jacobs; Emmie Dornez; Joran Verspreet; Jan A. Delcour; Christophe M. Courtin

Wheat bran, a by-product of the industrial roller milling of wheat, is increasingly added to food products because of its nutritional profile and physiological effects. Epidemiological data and scientific studies have demonstrated the health benefits of consuming bran-rich or whole-grain food products. However, incorporation of wheat bran in cereal-based products negatively affects their production process. Furthermore, the organoleptic quality of the obtained products is mostly perceived as inferior to that of products based on refined wheat flour. This review summarizes the current knowledge on the impact of wheat bran on bread making, provides a comprehensive overview of the bran properties possibly involved, and discusses different strategies that have been evaluated up till now to counteract the detrimental effects of wheat bran on bread making.


Annual Review of Food Science and Technology - (new in 2010) | 2016

A Critical Look at Prebiotics Within the Dietary Fiber Concept

Joran Verspreet; Bram Damen; Willem F. Broekaert; Kristin Verbeke; Jan A. Delcour; Christophe M. Courtin

This article reviews the current knowledge of the health effects of dietary fiber and prebiotics and establishes the position of prebiotics within the broader context of dietary fiber. Although the positive health effects of specific fibers on defecation, reduction of postprandial glycemic response, and maintenance of normal blood cholesterol levels are generally accepted, other presumed health benefits of dietary fibers are still debated. There is evidence that specific dietary fibers improve the integrity of the epithelial layer of the intestines, increase the resistance against pathogenic colonization, reduce the risk of developing colorectal cancer, increase mineral absorption, and have a positive impact on the immune system, but these effects are neither generally acknowledged nor completely understood. Many of the latter effects are thought to be particularly elicited by prebiotics. Although the prebiotic concept evolved significantly during the past two decades, the line between prebiotics and nonprebiotic dietary fiber remains vague. Nevertheless, scientific evidence demonstrating the health-promoting potential of prebiotics continues to accumulate and suggests that prebiotic fibers have their rightful place in a healthy diet.


Plant and Cell Physiology | 2013

Fructan Metabolism in Developing Wheat (Triticum aestivum L.) Kernels

Joran Verspreet; Sara Cimini; Rudy Vergauwen; Emmie Dornez; Vittoria Locato; Katrien Le Roy; Laura De Gara; Wim Van den Ende; Jan A. Delcour; Christophe M. Courtin

Although fructans play a crucial role in wheat kernel development, their metabolism during kernel maturation is far from being understood. In this study, all major fructan-metabolizing enzymes together with fructan content, fructan degree of polymerization and the presence of fructan oligosaccharides were examined in developing wheat kernels (Triticum aestivum L. var. Homeros) from anthesis until maturity. Fructan accumulation occurred mainly in the first 2 weeks after anthesis, and a maximal fructan concentration of 2.5 ± 0.3 mg fructan per kernel was reached at 16 days after anthesis (DAA). Fructan synthesis was catalyzed by 1-SST (sucrose:sucrose 1-fructosyltransferase) and 6-SFT (sucrose:fructan 6-fructosyltransferase), and to a lesser extent by 1-FFT (fructan:fructan 1-fructosyltransferase). Despite the presence of 6G-kestotriose in wheat kernel extracts, the measured 6G-FFT (fructan:fructan 6G-fructosyltransferase) activity levels were low. During kernel filling, which lasted from 2 to 6 weeks after anthesis, kernel fructan content decreased from 2.5 ± 0.3 to 1.31 ± 0.12 mg fructan per kernel (42 DAA) and the average fructan degree of polymerization decreased from 7.3 ± 0.4 (14 DAA) to 4.4 ± 0.1 (42 DAA). FEH (fructan exohydrolase) reached maximal activity between 20 and 28 DAA. No fructan-metabolizing enzyme activities were registered during the final phase of kernel maturation, and fructan content and structure remained unchanged. This study provides insight into the complex metabolism of fructans during wheat kernel development and relates fructan turnover to the general phases of kernel development.


Journal of Agricultural and Food Chemistry | 2013

Maximizing the Concentrations of Wheat Grain Fructans in Bread by Exploring Strategies To Prevent Their Yeast (Saccharomyces cerevisiae)-Mediated Degradation

Joran Verspreet; Sami Hemdane; Emmie Dornez; Sven Cuyvers; Jan A. Delcour; Christophe M. Courtin

The degradation of endogenous wheat grain fructans, oligosaccharides with possible health-promoting potential, during wheat whole meal bread making was investigated, and several strategies to prevent their degradation were evaluated. Up to 78.4 ± 5.2% of the fructans initially present in wheat whole meal were degraded during bread making by the action of yeast ( Saccharomyces cerevisiae ) invertase. The addition of sucrose to dough delayed fructan degradation but had no effect on final fructan concentrations. However, yeast growth conditions and yeast genotype did have a clear impact. A 3-fold reduction of fructan degradation could be achieved when the commercial bread yeast strain was replaced by yeast strains with lower sucrose degradation activity. Finally, fructan degradation during bread making could be prevented completely by the use of a yeast strain lacking invertase. These results show that the nutritional profile of bread can be enhanced through appropriate yeast technology.


Environmental Microbiology | 2017

Inter‐individual differences determine the outcome of wheat bran colonization by the human gut microbiome

Kim De Paepe; Frederiek-Maarten Kerckhof; Joran Verspreet; Christophe M. Courtin; Tom Van de Wiele

Gut microbiota research reveals a vital role for the luminal and mucosal gut microbiota in human health. Fewer studies, however, have characterized the microbiome associated with undigested, insoluble dietary particles in the gut. These particles can act as a food source for bacteria and offer a physical platform to which they can attach. In this study, the microbiome colonizing wheat bran particles was analyzed. In a batch experiment, wheat bran particles were separately incubated with the faecal microbiota derived from 10 donors and washed after 48 h to remove loosely attached bacteria. The response of the luminal community to wheat bran and inulin, acting as a well-characterized control, was largely donor-dependent, both functionally, and with respect to the microbiome composition. Depending on the donor, wheat bran and inulin fermentation yielded proportionally higher propionate or butyrate production. Clostridium cluster XIVa and, depending on the donor, Prevotella, Roseburia, Megamonas, Bifidobacterium and Bacteroides species were enriched on the wheat bran particles. These genera include species with the documented ability to serve as primary degraders of wheat bran components and other species depending on cross-feeding to obtain their energy. Both functional groups were present in all donors, despite the large inter-individual differences.


Food Chemistry | 2017

Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations

Nore Struyf; Jitka Laurent; Bianca Lefevere; Joran Verspreet; Kevin J. Verstrepen; Christophe M. Courtin

It is generally believed that maltose drives yeast-mediated bread dough fermentation. The relative importance of fructose and glucose, released from wheat fructan and sucrose by invertase, compared to maltose is, however, not documented. This is surprising given the preference of yeast for glucose and fructose over maltose. This study revealed that, after 2h fermentation of wheat flour dough, about 44% of the sugars consumed were generated by invertase-mediated degradation of fructan, raffinose and sucrose. The other 56% were generated by amylases. In whole meal dough, 70% of the sugars consumed were released by invertase activity. Invertase-mediated sugar release seems to be crucial during the first hour of fermentation, while amylase-mediated sugar release was predominant in the later stages of fermentation, which explains why higher amylolytic activity prolonged the productive fermentation time only. These results illustrate the importance of wheat fructan and sucrose content and their degradation for dough fermentations.


Frontiers in Plant Science | 2015

Fructan biosynthesis and degradation as part of plant metabolism controlling sugar fluxes during durum wheat kernel maturation

Sara Cimini; Vittoria Locato; Rudy Vergauwen; Annalisa Paradiso; Cristina Cecchini; Liesbeth Vandenpoel; Joran Verspreet; Christophe M. Courtin; Maria Grazia D'Egidio; Wim Van den Ende; Laura De Gara

Wheat kernels contain fructans, fructose based oligosaccharides with prebiotic properties, in levels between 2 and 35 weight % depending on the developmental stage of the kernel. To improve knowledge on the metabolic pathways leading to fructan storage and degradation, carbohydrate fluxes occurring during durum wheat kernel development were analyzed. Kernels were collected at various developmental stages and quali-quantitative analysis of carbohydrates (mono- and di-saccharides, fructans, starch) was performed, alongside analysis of the activities and gene expression of the enzymes involved in their biosynthesis and hydrolysis. High resolution HPAEC-PAD of fructan contained in durum wheat kernels revealed that fructan content is higher at the beginning of kernel development, when fructans with higher DP, such as bifurcose and 1,1-nystose, were mainly found. The changes in fructan pool observed during kernel maturation might be part of the signaling pathways influencing carbohydrate metabolism and storage in wheat kernels during development. During the first developmental stages fructan accumulation may contribute to make kernels more effective Suc sinks and to participate in osmotic regulation while the observed decrease in their content may mark the transition to later developmental stages, transition that is also orchestrated by changes in redox balance.


Scientific Reports | 2017

Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity

Francesco Suriano; Laure B. Bindels; Joran Verspreet; Christophe M. Courtin; Kristin Verbeke; Patrice D. Cani; Audrey M. Neyrinck; Nathalie M. Delzenne

The aim of this study was to determine the impact of different wheat bran fractions on the gut microbiota and fat binding capacity to explain their differential effects on metabolic and inflammatory disorders induced by a western diet (WD) in mice. Wheat bran derived arabinoxylan oligosaccharides (AXOS), a crude fraction of wheat bran (WB), or the same wheat bran with reduced particle size (WBs) were added to the WD of mice for 8 weeks. AXOS shifted the gut microbiota composition, blunted Clostridium and Turicibacter genera and strongly promoted Bifidobacterium and Butyricicoccus genera, independently of changes in gut antimicrobial peptide expression. AXOS was the most efficient to reduce adiposity. Only WB fraction promoted fat excretion and differed from the other fractions by the capacity to increase the Akkermansia genus and to counteract gut interleukin 1 beta (IL1β) overexpression. Strikingly, WBs promoted steatosis and adipose tissue inflammation, despite its ability -like WB- to increase bacterial diversity. In conclusion, wheat bran fractions differently affect metabolic and inflammatory disorders associated with WD feeding, depending on their particle size, their fat binding capacity and their influence on the gut microbiota. Those results might be useful to take into account in nutritional advices to control obesity.

Collaboration


Dive into the Joran Verspreet's collaboration.

Top Co-Authors

Avatar

Christophe M. Courtin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jan A. Delcour

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Emmie Dornez

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sami Hemdane

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wim Van den Ende

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Nore Struyf

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kevin J. Verstrepen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Pieter Jacobs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rudy Vergauwen

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge