Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jordan L. Hawkins is active.

Publication


Featured researches published by Jordan L. Hawkins.


Neuroscience | 2015

Nicotine stimulates expression of proteins implicated in peripheral and central sensitization.

Jordan L. Hawkins; J.E. Denson; D.R. Miley; Paul L. Durham

Pain patients who are nicotine dependent report a significantly increased incidence and severity of pain intensity. The goal of this study was to determine the effects of prolonged nicotine administration on inflammatory proteins implicated in the development of peripheral and central sensitization of the trigeminal system. Behavioral, immunohistochemical, and microarray studies were utilized to investigate the effects of nicotine administered daily for 14 days via an Alzet® osmotic pump in Sprague Dawley rats. Systemic nicotine administration caused a significant increase in nocifensive withdrawals to mechanical stimulation of trigeminal neurons. Nicotine stimulated expression of the pro-inflammatory signal transduction proteins phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-c-Jun N-terminal kinase (p-JNK), and protein kinase A (PKA) in the spinal trigeminal nucleus. Nicotine also promoted elevations in the expression of glial fibrillary acidic protein (GFAP), a biomarker of activated astrocytes, and the microglia biomarker ionized calcium-binding adapter molecule 1 (Iba1). Similarly, levels of eleven cytokines were significantly elevated with the largest increase in expression of TNF-α. Levels of PKA, p-ERK, and p-JNK in trigeminal ganglion neurons were increased by nicotine. Our findings demonstrate that prolonged systemic administration of nicotine promotes sustained behavioral and cellular changes in the expression of key proteins in the spinal trigeminal nucleus and trigeminal ganglion implicated in the development and maintenance of peripheral and central sensitization.


Neuroscience | 2016

Elevated levels of calcitonin gene-related peptide in upper spinal cord promotes sensitization of primary trigeminal nociceptive neurons

Lauren E. Cornelison; Jordan L. Hawkins; Paul L. Durham

Orofacial pain conditions including temporomandibular disorder (TMD) and migraine are characterized by peripheral and central sensitization of trigeminal nociceptive neurons. The goal of this study was to investigate the role of calcitonin gene-related peptide (CGRP) in promoting bidirectional signaling within the trigeminal system to mediate sensitization of primary nociceptive neurons. Adult male Sprague-Dawley rats were injected intercisternally with CGRP or co-injected with the receptor antagonist CGRP8-37 or KT 5720, a protein kinase A (PKA) inhibitor. Nocifensive head withdrawal response to mechanical stimulation was investigated using von Frey filaments. Expression of PKA, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba1) in the spinal cord and phosphorylated extracellular signal-regulated kinase (P-ERK) in the ganglion was studied using immunohistochemistry. Some animals were co-injected with CGRP and Fast Blue dye and the ganglion was imaged using fluorescent microscopy. CGRP increased nocifensive responses to mechanical stimulation when compared to control. Co-injection of CGRP8-37 or KT 5720 with CGRP inhibited the nocifensive response. CGRP stimulated PKA and GFAP expression in the spinal cord, and P-ERK in ganglion neurons. Seven days post injection, Fast Blue was observed in ganglion neurons and satellite glial cells. Our results demonstrate that elevated levels of CGRP in the upper spinal cord promote sensitization of primary nociceptive neurons via a mechanism that involves activation of PKA centrally and P-ERK in ganglion neurons. Our findings provide evidence of bidirectional signaling within the trigeminal system that facilitate increased neuron-glia communication within the ganglion associated with trigeminal sensitization.


Journal of oral and facial pain and headache | 2016

Prolonged Jaw Opening Promotes Nociception and Enhanced Cytokine Expression.

Jordan L. Hawkins; Paul L. Durham

AIMS To test the hypothesis that prolonged jaw opening, as can occur during routine dental procedures, increases nociceptive sensitivity of the masseter muscle and increases cytokine expression. METHODS Sprague-Dawley rats were used to investigate behavioral and cellular changes in response to prolonged jaw opening. A surgical retractor was placed around the maxillary and mandibular incisors, and the jaw was held at near maximal opening for 20 minutes. Head-withdrawal responses to mechanical stimuli applied to the facial skin overlying the left and right masseter muscles were determined following jaw opening. Cytokine levels in the upper cervical spinal cord containing the caudal part of the spinal trigeminal nucleus were evaluated using protein antibody microarrays (n = 3). Statistical analysis was performed using a nonparametric Mann-Whitney U test. RESULTS Prolonged jaw opening significantly increased nocifensive head withdrawal to mechanical stimuli at 2 hours, and days 3 and 7 postinduction (P < .05). The increase in nociceptive response resolved after 14 days. Sustained jaw opening also stimulated differential cytokine expression in the trigeminal ganglion and upper cervical spinal cord that persisted 14 days postprocedure (P < .05). CONCLUSION These findings provide evidence that near maximal jaw opening can lead to activation and prolonged sensitization of trigeminal neurons that results in nociceptive behavior evoked by stimulation of the masseter muscle, a physiologic event often associated with temporomandibular disorders (TMD). Results from this study may provide a plausible explanation for why some patients develop TMD after routine dental procedures that involve prolonged jaw opening.


PAIN Reports | 2017

Vagus nerve stimulation inhibits trigeminal nociception in a rodent model of episodic migraine

Jordan L. Hawkins; Lauren E. Cornelison; Brian A. Blankenship; Paul L. Durham

Introduction: Although neck muscle tension is considered a risk factor for migraine, pungent odors can act as a trigger to initiate an attack in sensitized individuals. Although noninvasive vagus nerve stimulation (nVNS) is now an approved treatment for chronic migraine, how it functions to inhibit trigeminal nociception in an episodic migraine model is not known. Objectives: The objectives of this study were to determine if nVNS could inhibit trigeminal nociception in a novel model of episodic migraine and investigate changes in the expression of proteins implicated in peripheral and central sensitization. Methods: Sprague-Dawley male rats were injected with an inflammatory agent in the trapezius muscle before exposure to pungent volatile compounds, which was used to initiate trigeminal nociceptor activation. The vagus nerve was stimulated transdermally by a 1-ms pulse of 5 kHz sine waves, repeated at 25 Hz for 2 minutes. Nocifensive head withdrawal response to von Frey filaments was determined and immunoreactive protein levels in the spinal cord and trigeminal ganglion (TG) were investigated. Results: Exposure to the pungent odor significantly increased the number of nocifensive withdrawals in response to mechanical stimulation of sensitized TG neurons mediated by neck muscle inflammation. Noninvasive vagus nerve stimulation inhibited nociception and repressed elevated levels of P-ERK in TG, Iba1 in microglia, and GFAP in astrocytes from sensitized animals exposed to the pungent odor. Conclusion: Our findings demonstrate that nVNS inhibits mechanical nociception and represses expression of proteins associated with peripheral and central sensitization of trigeminal neurons in a novel rodent model of episodic migraine.


Brain Research | 2018

Secondary traumatic stress increases expression of proteins implicated in peripheral and central sensitization of trigeminal neurons

Jordan L. Hawkins; N.J. Moore; D.R. Miley; Paul L. Durham

The pathology of migraine, a common neurological disease, involves sensitization and activation of trigeminal nociceptive neurons to promote hyperalgesia and allodynia during an attack. Migraineurs often exhibit characteristics of a hyperexcitable or hypervigilant nervous system. One of the primary reported risk factors for development of a hyperexcitable trigeminal system is chronic, unmanaged stress and anxiety. While primary traumatic stress is a commonly cited risk factor for many pain conditions, exposure to secondary traumatic stress early in life is also thought to be a contributing risk factor. The goal of this study was to investigate cellular changes within the spinal trigeminal nucleus and trigeminal ganglion mediated by secondary traumatic stress. Male Sprague Dawley rats (sender) were subjected to forced swim testing (primary traumatic stress) and were then housed in close visual, olfactory, and auditory proximity to the breeding male and female rats, pregnant female rats, or female rats and their nursing offspring (all receivers). In response to secondary stress, levels of calcitonin gene-related peptide, active forms of the mitogen activated protein kinases ERK, JNK, and p38, and astrocyte expression of glial fibrillary acidic protein were significantly elevated in the spinal trigeminal nucleus in day 45 offspring when compared to naïve offspring. In addition, increased nuclear expression of ERK and p38 was observed in trigeminal ganglion neurons. Our results demonstrate that secondary traumatic stress promotes cellular events associated with prolonged trigeminal sensitization in the offspring, and provides a mechanism of how early life stress may function as a risk factor for migraine.


Journal of oral and facial pain and headache | 2017

Central Role of Protein Kinase A in Promoting Trigeminal Nociception in an In Vivo Model of Temporomandibular Disorders.

Lindsey Koop; Jordan L. Hawkins; Lauren E. Cornelison; Paul L. Durham

AIMS To investigate cellular changes in the spinal trigeminal nucleus (STN) and trigeminal ganglion (TG) associated with trigeminal nociception mediated by inflammation in the temporomandibular joint (TMJ). METHODS Male Sprague-Dawley rats (n = 86) were utilized to investigate cellular and behavioral responses to prolonged TMJ inflammation caused by bilateral injection of Complete Freunds Adjuvant (CFA) in the TMJ capsules. To investigate the cellular effects of protein kinase A (PKA) in the STN, rats were injected intrathecally with the selective PKA inhibitor KT5720 prior to injection of CFA into both TMJ capsules. Levels of calcitonin gene-related peptide (CGRP), active PKA, and ionized calcium-binding adapter molecule 1 (Iba1) in the STN and expression of phosphorylated extracellular regulated kinases (p-ERK) in the TG were determined with immunohistochemistry (n ≥ 3 experiments per test condition). Nocifensive head withdrawal responses to mechanical stimulation of the cutaneous tissue over the TMJ were monitored following CFA injection in the absence or presence of KT5720 (n = 7). Statistical analysis was performed using parametric analysis of variance (ANOVA) tests. RESULTS Intrathecal injection of KT5720 significantly inhibited the stimulatory effect of CFA on levels of CGRP, PKA, and Iba1 in the STN. In addition, administration of KT5720 decreased the average number of CFA-induced nocifensive withdrawal responses to mechanical stimulation and the CFA-mediated increase in p-ERK expression in the ganglion. CONCLUSION These findings provide evidence that elevated PKA activity in the STN promotes cellular events temporally associated with trigeminal nociception caused by prolonged TMJ inflammation.


Archives of Oral Biology | 2017

Tumor necrosis factor-Alpha stimulates cytokine expression and transient sensitization of trigeminal nociceptive neurons

Zachary L. Durham; Jordan L. Hawkins; Paul L. Durham

OBJECTIVE Elevated levels of tumor necrosis factor- alpha (TNF-α) in the capsule of the temporomandibular joint (TMJ) are implicated in the underlying pathology of temporomandibular disorders (TMD). TMD are a group of conditions that result in pain in the TMJ and/or muscles of mastication, and are associated with significant social and economic burdens. The goal of this study was to investigate the effect of elevated TNF-α levels in the TMJ capsule on nocifensive behavioral response to mechanical stimulation of trigeminal neurons and regulation of cytokines within the trigeminal ganglion. DESIGN Male Sprague-Dawley rats were injected bilaterally in the TMJ capsule with TNF-α and changes in nocifensive head withdrawal responses to mechanical stimulation of cutaneous tissue directly over the capsule was determined using von Frey filaments. Cytokine levels in trigeminal ganglia were determined by protein array analysis at several time points post injection and correlated to nocifensive behavior. RESULTS TNF-α caused a significant increase in the average number of nocifensive responses when compared to naive and vehicle treated animals 2h post injection, but levels returned to control levels at 24h. Based on array analysis, the levels of eight cytokines were significantly elevated above vehicle control levels at 2h following TNF-α injection, but all eight had returned to the vehicle control levels after 24h. CONCLUSIONS Our findings provide evidence that elevated levels of TNF-α in the joint capsule, which is reported to occur in TMD, promotes nociception in trigeminal ganglia neurons via a mechanism that temporally correlates with differential regulation of several cytokines.


Journal of oral and facial pain and headache | 2018

Enriched Chicken Bone Broth as a Dietary Supplement Reduces Nociception and Sensitization Associated with Prolonged Jaw Opening

Jordan L. Hawkins; Paul L. Durham

AIMS To test a commercially available enriched chicken bone broth (ECBB) product for its potential anti-inflammatory properties and to evaluate its ability to reduce nociception and expression of protein kinase A (PKA) in a clinically relevant model of temporomandibular disorder (TMD) caused by prolonged jaw opening in rats. METHODS The potential of the ECBB and of a homemade broth was investigated using the Folin-Ciocalteu reagent and percent inhibition of cyclooxygenase-2 (COX-2) activity, which was determined using a commercially available kit. Additionally, the effect of ECBB and homemade broth on nocifensive head withdrawal responses to mechanical stimulation in male Sprague-Dawley rats subjected to prolonged jaw opening was evaluated. Differences were considered significant at P < .025. Changes in PKA expression in the medullary dorsal horn region of the spinal trigeminal nucleus associated with prolonged jaw opening were assessed using immunofluorescence, and these changes were considered significant at P < .05. Behavioral data were analyzed by using multiple nonparametric tests, and immunohistochemistry data were analyzed by using one-way analysis of variance with Games-Howell post hoc tests in SPSS software. RESULTS ECBB exhibited greater reducing potential and inhibition of COX-2 activity compared to homemade broth. Near maximal jaw opening was sufficient to induce sustained nocifensive responses to mechanical stimuli for 7 days. This increased sensitivity was correlated with elevated levels of the active form of PKA. Importantly, dietary inclusion of ECBB, but not of homemade broth, for 2 weeks prior to jaw opening was sufficient to reduce nocifensive behaviors and PKA expression. CONCLUSION Findings from this study provide evidence that ECBB attenuates nociception and expression of the pro-inflammatory protein PKA and thus may be beneficial as a nutraceutical supplement to manage inflammatory pain associated with TMD.


Journal of Orofacial Pain | 2012

Validation of a novel rat-holding device for studying heat- and mechanical-evoked trigeminal nocifensive behavioral responses.

Filip G. Garrett; Jordan L. Hawkins; Allison E. Overmyer; Joshua B. Hayden; Paul L. Durham


Archive | 2014

Compositions prepared from poultry and methods of their use

Roger Lynn Dake; Stephanie Lynch; Paul L. Durham; Ryan J. Cady; Jordan L. Hawkins

Collaboration


Dive into the Jordan L. Hawkins's collaboration.

Top Co-Authors

Avatar

Paul L. Durham

Missouri State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rhy Norton

Missouri State University

View shared research outputs
Top Co-Authors

Avatar

D.R. Miley

Missouri State University

View shared research outputs
Top Co-Authors

Avatar

F. Garrrett

Missouri State University

View shared research outputs
Top Co-Authors

Avatar

J. Hayden

Missouri State University

View shared research outputs
Top Co-Authors

Avatar

David Miley

Missouri State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Campos

Missouri State University

View shared research outputs
Top Co-Authors

Avatar

J.E. Denson

Missouri State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge