Jordan R. Oliver
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jordan R. Oliver.
European Journal of Immunology | 2010
Rahul Kushwah; Jing Wu; Jordan R. Oliver; George Jiang; Jinyi Zhang; Katherine A. Siminovitch; Jim Hu
DC apoptosis has been observed in patients with cancer and sepsis, and defects in DC apoptosis have been implicated in the development of autoimmune diseases. However, the mechanisms of how DC apoptosis affects immune responses, are unclear. In this study, we showed that immature viable DC have the ability to uptake apoptotic DC as well as necrotic DC without it being recognized as an inflammatory event by immature viable DC. However, the specific uptake of apoptotic DC converted immature viable DC into tolerogenic DC, which were resistant to LPS‐induced maturation. These tolerogenic DC secreted increased levels of TGF‐β1, which induced differentiation of naïve T cells into Foxp3+ Treg. Furthermore, induction of Treg differentiation only occurred upon uptake of apoptotic DC and not apoptotic splenocytes by viable DC, indicating that it is specifically the uptake of apoptotic DC that gives viable immature DC the potential to induce Foxp3+ Treg. Taken together, these findings identify uptake of apoptotic DC by viable immature DC as an immunologically tolerogenic event.
Journal of Immunology | 2009
Rahul Kushwah; Jordan R. Oliver; Jinyi Zhang; Katherine A. Siminovitch; Jim Hu
Dendritic cell (DC) apoptosis has been shown to play a role in maintaining a balance between tolerance and immunity. However, the mechanisms of how DC apoptosis affects the immune response are unclear. We have shown that in vitro culture of apoptotic DCs with immature DCs, results in their uptake by immature DCs, which subsequently turn into tolerogenic DCs, which then secrete TGF-β1 and induce Foxp3+ regulatory T cells (Tregs). In this study we looked at the effects of apoptotic DCs in vivo. Here we show that apoptotic DCs are taken up by viable DCs in vivo, which suppresses the ability of viable DCs to undergo maturation and subsequent migration to the lymph nodes in response to LPS. Additionally, delivery of apoptotic DCs to LPS inflamed lungs results in resolution of inflammation, which is mediated by the ability of apoptotic DCs to suppress response of viable DCs to LPS. Additionally, apoptotic DCs also induce TGF-β1 secretion in the mediastinal lymph nodes, which results in expansion of Foxp3+ Tregs. Most importantly, we show that delivery of apoptotic DCs followed by OVA in CFA to mice suppresses T cell response to OVA and instead induces de novo generation of OVA-specific Tregs. Furthermore, delivery of apoptotic DCs followed by OVA in CFA results in expansion of Tregs in TCR transgenic (OT-II) mice. These findings demonstrate that apoptotic DCs are taken up by viable DCs in vivo, which promotes tolerance through suppression of DC maturation and induction of Tregs.
Laboratory Investigation | 2012
Jordan R. Oliver; Rahul Kushwah; Jim Hu
The E26 transformation-specific (ETS) family of transcription factors comprises of 27 and 26 members in humans and mice, respectively, which are known to regulate many different biological processes, including cell proliferation, cell differentiation, embryonic development, neoplasia, hematopoiesis, angiogenesis, and inflammation. The epithelium-specific ETS transcription factor-1 (ESE-1) is a physiologically important ETS transcription factor, which has been shown to play a role in the pathogenesis of various diseases, and was originally characterized as having an epithelial-restricted expression pattern, thus placing it within the epithelium-specific ETS subfamily. Despite a large body of published work on ETS biology, much remains to be learned about the precise functions of ESE-1 and other epithelium-specific ETS factors in regulating diverse disease processes. Clues as to the specific function of ESE-1 in the setting of various diseases can be obtained from studies aimed at examining the expression of putative target genes regulated by ESE-1. Thus, this review will focus primarily on the various roles of ESE-1 in different pathophysiological processes, including regulation of epithelial cell differentiation during both intestinal development and lung regeneration; regulation of dendritic cell-driven T-cell differentiation during allergic airway inflammation; regulation of mammary gland development and breast cancer; and regulation of the effects of inflammatory stimuli within the setting of synovial joint and vascular inflammation. Understanding the exact mechanisms by which ESE-1 regulates these processes can have important implications for the treatment of a wide range of diseases.
Gene Therapy | 2007
Rahul Kushwah; Jordan R. Oliver; H Cao; Jim Hu
Adenoviral vector-mediated gene delivery has been vastly investigated for cystic fibrosis (CF) gene therapy; however, one of its drawbacks is the low efficiency of gene transfer, which is due to basolateral colocalization of viral receptors, immune responses to viral vectors and the presence of a thick mucus layer in the airways of CF patients. Therefore, enhancement of gene transfer can lead to reduction in the viral dosage, which could further reduce the acute toxicity associated with the use of adenoviral vectors. Nacystelyn (NAL) is a mucolytic agent with anti-inflammatory and antioxidant properties, and has been used clinically in CF patients to reduce mucus viscosity in the airways. In this study, we show that pretreatment of the airways with NAL followed by administration of adenoviral vectors in complex with DEAE-Dextran can significantly enhance gene delivery to the airways of mice without any harmful effects. Moreover, NAL pretreatment can reduce the airway inflammation, which is normally observed after delivery of adenoviral particles. Taken together, these results indicate that NAL pretreatment followed by adenoviral vector-mediated gene delivery can be beneficial to CF patients by increasing the efficiency of gene transfer to the airways, and reducing the acute toxicity associated with the administration of adenoviral vectors.
Laboratory Investigation | 2011
Jordan R. Oliver; Rahul Kushwah; Jing Wu; Jie Pan; Ernest Cutz; Herman Yeger; Thomas K. Waddell; Jim Hu
E74-like transcription factor-3 (Elf3), a member of the E26 transformation-specific transcription factor family, is strongly expressed in epithelial-rich tissues, such as small intestine, fetal lung, and various lung cancers. Although previous studies have shown a defect in terminal differentiation of the small intestinal epithelium of Elf3-deficient (Elf3−/−) mice during embryonic development, very little is known about the role Elf3 may play in repair of the airway epithelium after injury. In order to investigate whether Elf3 is involved in regeneration of the bronchiolar epithelium after Clara cell-specific injury, we administered naphthalene to both wild-type (Elf3+/+) and Elf3−/− mice. Histopathological analysis revealed no significant difference in the extent of naphthalene-induced Clara cell necrosis between Elf3+/+ mice and Elf3−/− mice. In the bronchiolar epithelium of Elf3−/− mice, there was a substantial delay in the kinetics of cell proliferation and mitosis along with Clara cell renewal, whereas in the peribronchiolar interstitium, there was a significantly greater level of cell proliferation and mitosis in Elf3−/− mice than in Elf3+/+ mice. Last, the intensity of immunopositive signal for transforming growth factor-β type II receptor, which is a well-known transcriptional target gene of Elf3 and involved in the induction of epithelial cell differentiation, was significantly lower in the bronchiolar epithelium of Elf3−/− mice when compared with Elf3+/+ mice. Taken together, our results suggest that Elf3 plays an important role in the regulation of lung cell proliferation and differentiation during repair of the injured bronchiolar airway epithelium.
Journal of Immunology | 2011
Rahul Kushwah; Jordan R. Oliver; Jing Wu; Zhijie Chang; Jim Hu
Elf3 belongs to the Ets family of transcription factors and has been implicated in inflammation. Elf3 is highly expressed in the lungs, and Elf3−/− mice are impaired in IL-6 production after intranasal LPS exposure. To identify the role of Elf3 in Th17-driven pulmonary inflammation, we have performed epicutaneous sensitization of Elf3−/− mice with OVA followed by airway OVA challenge and have identified Elf3−/− mice to be impaired in induction of Th17 response, attributable to impairment of IL-6 production by dendritic cells (DCs). However, increased serum levels of OVA-specific IgG1 and IgE were observed, pointing toward an exaggerated Th2 response. To study Th2 response, we performed i.p. sensitization of Elf3−/− mice with OVA and confirmed loss of Elf3 to result in an aggravated Th2 response, characterized by increased generation of IL-4–producing T cells, increased levels of OVA-specific IgE and IgG1 Ab titers, and increased serum levels of Th2 cytokines, together with extensive inflammation and mucus production in airways. Elf3−/− DCs were impaired in priming Th1 differentiation, which, in turn, promoted Th2 differentiation. This was mediated by the ability of Elf3−/− DCs to undergo hypermaturation but secrete significantly lower levels of IL-12 in response to inflammatory stimuli. The impairment of IL-12 production was due to impairment of IL-12p40 gene induction in Elf3−/− DCs in response to inflammatory stimuli. Taken together, our study identifies a novel function of Elf3 in regulating allergic airway inflammation by regulating DC-driven Th1, Th2, and Th17 differentiation.
Journal of Virology | 2012
Rahul Kushwah; Jordan R. Oliver; Rongqi Duan; Li Zhang; Shaf Keshavjee; Jim Hu
ABSTRACT The success of helper-dependent adenoviral (HD-Ad) vector-mediated lung gene therapy is hampered by the host immune response, which limits pulmonary transgene expression following multiple rounds of vector readminstration. Here, we show that HD-Ad-mediated pulmonary gene expression is sustained even upon three rounds of readministration to immunodeficient mice, highlighting the need to suppress the adaptive immune response for sustained gene expression following vector readministration. Therefore, we devised a dendritic cell (DC)-based strategy for induction of immunological tolerance toward HD-Ad vectors. DCs derived in the presence of interleukin-10 (IL-10) are refractory to HD-Ad-induced maturation and instead facilitate generation of IL-10-producing Tr1 regulatory T cells which suppress HD-Ad-induced T cell proliferation. Delivery of HD-Ad-pulsed, IL-10-modified DCs to mice induces long-lasting immunological tolerance to HD-Ad vectors, whereby pulmonary DC maturation, the T cell response, and antibody response to HD-Ad vectors are suppressed even after three rounds of pulmonary HD-Ad readministration. Moreover, sustained transgene expression is also observed in the lungs of mice immunized with HD-Ad-pulsed, IL-10-modified DCs even after three rounds of pulmonary HD-Ad delivery. Taken together, these studies identify the use of DCs generated in the presence of IL-10 as a novel strategy to induce long-lasting immune tolerance to HD-Ad vectors.
European Journal of Immunology | 2010
Rahul Kushwah; Jing Wu; Jordan R. Oliver; George Jiang; Jinyi Zhang; Katherine A. Siminovitch; Jim Hu
DC apoptosis has been observed in patients with cancer and sepsis, and defects in DC apoptosis have been implicated in the development of autoimmune diseases. However, the mechanisms of how DC apoptosis affects immune responses, are unclear. In this study, we showed that immature viable DC have the ability to uptake apoptotic DC as well as necrotic DC without it being recognized as an inflammatory event by immature viable DC. However, the specific uptake of apoptotic DC converted immature viable DC into tolerogenic DC, which were resistant to LPS‐induced maturation. These tolerogenic DC secreted increased levels of TGF‐β1, which induced differentiation of naïve T cells into Foxp3+ Treg. Furthermore, induction of Treg differentiation only occurred upon uptake of apoptotic DC and not apoptotic splenocytes by viable DC, indicating that it is specifically the uptake of apoptotic DC that gives viable immature DC the potential to induce Foxp3+ Treg. Taken together, these findings identify uptake of apoptotic DC by viable immature DC as an immunologically tolerogenic event.
European Journal of Immunology | 2010
Rahul Kushwah; Jing Wu; Jordan R. Oliver; George Jiang; Jinyi Zhang; Katherine A. Siminovitch; Jim Hu
DC apoptosis has been observed in patients with cancer and sepsis, and defects in DC apoptosis have been implicated in the development of autoimmune diseases. However, the mechanisms of how DC apoptosis affects immune responses, are unclear. In this study, we showed that immature viable DC have the ability to uptake apoptotic DC as well as necrotic DC without it being recognized as an inflammatory event by immature viable DC. However, the specific uptake of apoptotic DC converted immature viable DC into tolerogenic DC, which were resistant to LPS‐induced maturation. These tolerogenic DC secreted increased levels of TGF‐β1, which induced differentiation of naïve T cells into Foxp3+ Treg. Furthermore, induction of Treg differentiation only occurred upon uptake of apoptotic DC and not apoptotic splenocytes by viable DC, indicating that it is specifically the uptake of apoptotic DC that gives viable immature DC the potential to induce Foxp3+ Treg. Taken together, these findings identify uptake of apoptotic DC by viable immature DC as an immunologically tolerogenic event.
Journal of Immunology | 2011
Rahul Kushwah; Jing Wu; Jordan R. Oliver; Jim Hu