Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jordi Benach is active.

Publication


Featured researches published by Jordi Benach.


The EMBO Journal | 2007

The structural basis of cyclic diguanylate signal transduction by PilZ domains.

Jordi Benach; Swarup S Swaminathan; Rita Tamayo; Samuel K. Handelman; Ewa Folta-Stogniew; John E Ramos; Farhad Forouhar; Helen Neely; Jayaraman Seetharaman; Andrew Camilli; John F. Hunt

The second messenger cyclic diguanylate (c‐di‐GMP) controls the transition between motile and sessile growth in eubacteria, but little is known about the proteins that sense its concentration. Bioinformatics analyses suggested that PilZ domains bind c‐di‐GMP and allosterically modulate effector pathways. We have determined a 1.9 Å crystal structure of c‐di‐GMP bound to VCA0042/PlzD, a PilZ domain‐containing protein from Vibrio cholerae. Either this protein or another specific PilZ domain‐containing protein is required for V. cholerae to efficiently infect mice. VCA0042/PlzD comprises a C‐terminal PilZ domain plus an N‐terminal domain with a similar β‐barrel fold. C‐di‐GMP contacts seven of the nine strongly conserved residues in the PilZ domain, including three in a seven‐residue long N‐terminal loop that undergoes a conformational switch as it wraps around c‐di‐GMP. This switch brings the PilZ domain into close apposition with the N‐terminal domain, forming a new allosteric interaction surface that spans these domains and the c‐di‐GMP at their interface. The very small size of the N‐terminal conformational switch is likely to explain the facile evolutionary diversification of the PilZ domain.


Nature | 2006

Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB

Bomina Yu; William Edstrom; Jordi Benach; Yoshitomo Hamuro; Patricia C. Weber; Brian R. Gibney; John F. Hunt

Nucleic acid damage by environmental and endogenous alkylation reagents creates lesions that are both mutagenic and cytotoxic, with the latter effect accounting for their widespread use in clinical cancer chemotherapy. Escherichia coli AlkB and the homologous human proteins ABH2 and ABH3 (refs 5, 7) promiscuously repair DNA and RNA bases damaged by SN2 alkylation reagents, which attach hydrocarbons to endocyclic ring nitrogen atoms (N1 of adenine and guanine and N3 of thymine and cytosine). Although the role of AlkB in DNA repair has long been established based on phenotypic studies, its exact biochemical activity was only elucidated recently after sequence profile analysis revealed it to be a member of the Fe-oxoglutarate-dependent dioxygenase superfamily. These enzymes use an Fe(ii) cofactor and 2-oxoglutarate co-substrate to oxidize organic substrates. AlkB hydroxylates an alkylated nucleotide base to produce an unstable product that releases an aldehyde to regenerate the unmodified base. Here we have determined crystal structures of substrate and product complexes of E. coli AlkB at resolutions from 1.8 to 2.3 Å. Whereas the Fe-2-oxoglutarate dioxygenase core matches that in other superfamily members, a unique subdomain holds a methylated trinucleotide substrate into the active site through contacts to the polynucleotide backbone. Amide hydrogen exchange studies and crystallographic analyses suggest that this substrate-binding ‘lid’ is conformationally flexible, which may enable docking of diverse alkylated nucleotide substrates in optimal catalytic geometry. Different crystal structures show open and closed states of a tunnel putatively gating O2 diffusion into the active site. Exposing crystals of the anaerobic Michaelis complex to air yields slow but substantial oxidation of 2-oxoglutarate that is inefficiently coupled to nucleotide oxidation. These observations suggest that protein dynamics modulate redox chemistry and that a hypothesized migration of the reactive oxy-ferryl ligand on the catalytic Fe ion may be impeded when the protein is constrained in the crystal lattice.


Structure | 2002

The crystal structure of MT0146/CbiT suggests that the putative precorrin-8w decarboxylase is a methyltransferase

Jacob P. Keller; Paul M. Smith; Jordi Benach; Dinesh Christendat; George T. DeTitta; John F. Hunt

The CbiT and CbiE enzymes participate in the biosynthesis of vitamin B12. They are fused together in some organisms to form a protein called CobL, which catalyzes two methylations and one decarboxylation on a precorrin intermediate. Because CbiE has sequence homology to canonical precorrin methyltransferases, CbiT was hypothesized to catalyze the decarboxylation. We herein present the crystal structure of MT0146, the CbiT homolog from Methanobacterium thermoautotrophicum. The protein shows structural similarity to Rossmann-like S-adenosyl-methionine-dependent methyltransferases, and our 1.9 A cocrystal structure shows that it binds S-adenosyl-methionine in standard geometry near a binding pocket that could accommodate a precorrin substrate. Therefore, MT0146/CbiT probably functions as a precorrin methyltransferase and represents the first enzyme identified with this activity that does not have the canonical precorrin methyltransferase fold.


Proteins | 2003

The catalytic mechanism of Drosophila alcohol dehydrogenase: Evidence for a proton relay modulated by the coupled ionization of the active site Lysine/Tyrosine pair and a NAD+ ribose OH switch

Assen Koumanov; Jordi Benach; Sílvia Atrian; Roser Gonzàlez-Duarte; Andrey Karshikoff; Rudolf Ladenstein

The ionization properties of the active site residues in Drosophila lebanonensis alcohol dehydrogenase (DADH) were investigated theoretically by using an approach developed to account for multiple locations of the hydrogen atoms of the titratable and polar groups. The electrostatic calculations show that (a) the protonation/deprotonation transition of the binary complex of DADH is related to the coupled ionization of Tyr151 and Lys155 in the active site and (b) the pH dependence of the proton abstraction is correlated with a reorganization of the hydrogen bond network in the active site. On this basis, a proton relay mechanism for substrate dehydrogenation is proposed in which the O2′ ribose hydroxyl group from the coenzyme has a key role and acts as a switch. The proton relay chain includes the active site catalytic residues, as well as a chain of eight water molecules that connects the active site with the bulk solvent. Proteins 2003;51:289–298.


Journal of Biological Chemistry | 2006

Crystal structures of two bacterial 3-hydroxy-3-methylglutaryl-CoA lyases suggest a common catalytic mechanism among a family of TIM barrel metalloenzymes cleaving carbon-carbon bonds.

Farhad Forouhar; Munif Hussain; Ramy S. Farid; Jordi Benach; Mariam Abashidze; William Edstrom; Sergey M. Vorobiev; Rong Xiao; Thomas B. Acton; Zhuji Fu; Jung-Ja P. Kim; Henry M. Miziorko; Gaetano T. Montelione; John F. Hunt

The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 Å resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name “DRE-TIM metallolyases” for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis results and can guide subsequent studies directed at definitive experimental elucidation of this enzymes reaction mechanism.


FEBS Letters | 1997

Drosophila alcohol dehydrogenase: evaluation of Ser139 site-directed mutants.

Neus Cols; Sílvia Atrian; Jordi Benach; Rudolf Ladenstein; Roser Gonzàlez-Duarte

Drosophila alcohol dehydrogenase (DADH) belongs to the large and highly heterogeneous (15–30% residue identity) short‐chain dehydrogenase/reductase family (SDR). It is the only reported member that oxidizes mainly ethanol and 2‐propanol among other alcohols. To confirm the role of Ser139 we constructed two site‐directed mutants, Ser139Ala and Ser139Cys, which show no enzymatic activity. Molecular replacement and data from crystallographically refined 3D structures confirm the position of Ser139, whose hydroxyl group faces the cleft of the presumed catalytic pocket, very close to Tyr152 and Lys156. Thus, consistent with the constitution of the catalytic triad of other SDR, our results suggest that Ser139 of DADH is directly involved in the catalytic reaction.


Journal of Molecular Biology | 2008

Structure and Dynamics of the P7 Protein from the Bacteriophage ϕ12

Ertan Eryilmaz; Jordi Benach; Min Su; Jayaraman Seetharaman; Kaushik Dutta; Hui Wei; Paul Gottlieb; John F. Hunt; Ranajeet Ghose

Cystoviruses are a class of enveloped double-stranded RNA viruses that use a multiprotein polymerase complex (PX) to replicate and transcribe the viral genome. Although the structures of the polymerase and ATPase components of the cystoviral PX are known and their functional behavior is understood to a large extent, no atomic-resolution structural information is available for the major capsid protein P1 that defines the overall structure and symmetry of the viral capsid and the essential protein P7. Toward obtaining a complete structural and functional understanding of the cystoviral PX, we have obtained the structure of P7 from the cystovirus phi 12 at a resolution of 1.8 A. The N-terminal core region (1-129) of P7 forms a novel homodimeric alpha/beta-fold having structural similarities with BRCT domains implicated in multiple protein-protein interactions in DNA repair proteins. Our results, combined with the known role of P7 in stabilizing the nucleation complex during capsid assembly, hint toward its participation in key protein-protein interactions within the cystoviral PX. Additionally, we have found through solution NMR studies that the C-terminal tail of P7 (130-169) that is essential for virus viability, although highly disordered, contains a nascent helix. We demonstrate for the first time, through NMR titrations, that P7 is capable of interacting with RNA. We find that both the N-terminal core and the dynamic C-terminal tail of P7 play a role in RNA recognition. This interaction leads to a significant reduction of the degree of disorder in the C-terminal tail. Given the requirement of P7 in maintaining genome packaging efficiency and transcriptional fidelity, our data suggest a central biological role for P7-RNA interactions.


Journal of Biological Chemistry | 2007

Structural and functional studies of the abundant tegument protein ORF52 from murine gammaherpesvirus 68.

Jordi Benach; Lili Wang; Yang Chen; Chi Kent Ho; Shaoying Lee; Jayaraman Seetharaman; Rong Xiao; Thomas B. Acton; Gaetano T. Montelione; Hongyu Deng; Ren Sun; Liang Tong

The tegument is a layer of proteins between the nucleocapsid and the envelope of herpesviruses. The functions of most tegument proteins are still poorly understood. In murine gammaherpesvirus 68, ORF52 is an abundant tegument protein of 135 residues that is required for the assembly and release of infectious virus particles. To help understand the molecular basis for the function of this protein, we have determined its crystal structure at 2.1 Å resolution. The structure reveals a dimeric association of this protein. Interestingly, an N-terminal α-helix that assumes different conformation in the two monomers of the dimer mediates the formation of an asymmetrical tetramer and contains many highly conserved residues. Structural and sequence analyses suggest that this helix is more likely involved in interactions with other components of the tegument or nucleocapsid of the virus and that ORF52 functions as a symmetrical dimer. The asymmetrical tetramer of ORF52 may be a “latent” form of the protein, when it is not involved in virion assembly. The self-association of ORF52 has been confirmed by co-immunoprecipitation and fluorescence resonance energy transfer experiments. Deletion of the N-terminal α-helix, as well as mutation of the conserved Arg95 residue, abolished the function of ORF52. The results of the functional studies are fully consistent with the structural observations and indicate that the N-terminal α-helix is a crucial site of interaction for ORF52.


Journal of Biological Chemistry | 2004

A novel NAD-binding protein revealed by the crystal structure of 2,3-diketo-L-gulonate reductase (YiaK).

Farhad Forouhar; Insun Lee; Jordi Benach; Kaushal Kulkarni; Rong Xiao; Thomas B. Acton; Gaetano T. Montelione; Liang Tong

Escherichia coli YiaK catalyzes the reduction of 2,3-diketo-l-gulonate in the presence of NADH. It belongs to a large family of oxidoreductases that is conserved in archaea, bacteria, and eukaryotes but shows no sequence homology to other proteins. We report here the crystal structures at up to 2.0-Å resolution of YiaK alone and in complex with NAD-tartrate. YiaK has a new polypeptide backbone fold and a novel mode of recognizing the NAD cofactor. In addition, NAD is bound in an unusual conformation, at the interface of a dimer of the enzyme. The crystallographic analysis unexpectedly revealed the binding of tartrate in the active site. Enzyme kinetics studies confirm that tartrate and the related d-malate are inhibitors of YiaK. In contrast to most other enzymes where substrate binding produces a more closed conformation, the binding of NAD-tartrate to YiaK produces a more open active site. The free enzyme conformation is incompatible with NAD binding. His44 is likely the catalytic residue of the enzyme.


Chemico-Biological Interactions | 2001

Genesis of Drosophila ADH: the shaping of the enzymatic activity from a SDR ancestor

Jordi Benach; Sílvia Atrian; Rudolf Ladenstein; Roser Gonzàlez-Duarte

Drosophila alcohol dehydrogenase (ADH) is an NAD(H)-dependent oxidoreductase that catalyzes the oxidation of alcohols and aldehydes. Structurally and biochemically distinct from all the reported ADHs (typically, the mammalian medium-chain dehydrogenase/reductase-ethanol-metabolizing enzyme), it stands as the only small-alcohol transforming system that has originated from a short-chain dehydrogenase/reductase (SDR) ancestor. The crystal structures of the apo, binary (E.NAD(+)) and three ternary (E.NAD(+).acetone, E.NAD(+).3-pentanone and E.NAD(+).cyclohexanone) forms of Drosophila lebanonensis ADH have allowed us to infer the structural and kinetic features accounting for the generation of the ADH activity within the SDR lineage.

Collaboration


Dive into the Jordi Benach's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge