Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jordi Marcé-Nogué is active.

Publication


Featured researches published by Jordi Marcé-Nogué.


Journal of Evolutionary Biology | 2011

Temnospondyli bite club: ecomorphological patterns of the most diverse group of early tetrapods

Josep M. Fortuny; Jordi Marcé-Nogué; S. De Esteban-Trivigno; Lluís Gil; Àngel Galobart

Temnospondyls were a successful group of early tetrapods that lived during the Palaeozoic and Mesozoic periods. Different ecomorphotypes were present (terrestrial, amphibious and fully aquatic) with a wide range of lifestyles. Herein, we analysed several clades of temnospondyls using geometric morphometrics, Finite Element Analysis, and comparative phylogenetic analysis. Some temnospondyli clades were ‘crocodilomorph’ feeding analogues. The skull analysis reveals a concordance between form and feeding function, in amphibious and fully aquatic feeders. The form of terrestrial feeders could be consequences of adaptative or phylogenetical constraints. Basal temnospondyls, as edopoids, were able to leave the water and feed on land. Eryopids continued as terrestrial feeders, although some members showed a shift to increased aquatic feeding. The aquatic environment was especially occupied by archegosaurs during the Permian. After the Permo‐Triassic extinction, trematosaurs and capitosaurs returned to the aquatic environment and their members were amphibious and fully aquatic feeders until their disappearance.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2012

Skull Mechanics and the Evolutionary Patterns of the Otic Notch Closure in Capitosaurs (Amphibia: Temnospondyli)

Josep M. Fortuny; Jordi Marcé-Nogué; Lluís Gil; Àngel Galobart

Capitosaurs were among the largest amphibians that have ever lived. Their members displayed an amphibious lifestyle. We provide new information on functional morphology data, using finite element analysis (FEA) which has palaeoecological implications for the group. Our analyses included 17 taxa using (2D) plate models to test four loading cases (bilateral, unilateral and lateral bitings and skull raising system simulation). Our results demonstrates that, when feeding, capitosaurs concentrated the stress at the circumorbital region of the capitosaur skull and cranial sutures probably played a key role in dissipating and absorbing the stress generated during biting. Basal members (as Wetlugasaurus) were probably less specialized forms, while during Middle‐ and Late Triassic the group radiated into different ecomorphotypes with closed otic notch forms (as Cyclotosaurus) resulting in the strongest skulls during biting. Previous interpretations discussed a trend from an open to closed otic notch associated with lateral repositioning of the tabular horns, but the analysis of the skull‐raising system reveals that taxa exhibiting posteriorly directed tabular horns display similar results during skull raising to those of closed otic notch taxa. Our results suggest that various constraints besides otic notch morphology, such as the elongation of the tabular horns, snout length, skull width and position, and size of the orbits affect the function of the skull. On the light of our results, capitosaur skull showed a trend to reduce the stresses and deformation during biting. Capitosaurs could be considered crocodilian analogues as they were top‐level predators in fluvial and brackish Triassic ecosystems. Anat Rec, , 2012.


Scientific Reports | 2016

Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli)

Josep M. Fortuny; Jordi Marcé-Nogué; J. Sébastien Steyer; Soledad De Esteban-Trivigno; Eudald Mujal; Lluís Gil

Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.


Palaeontologia Electronica | 2015

Insights into the controversy over materials data for the comparison of biomechanical performance in vertebrates

Lluís Gil; Jordi Marcé-Nogué; Montserrat Sánchez

Mechanical comparison of different species is performed with the help of computational tools like Finite Element Analysis FEA. In palaeobiology it is common to consider bone like an isotropic material for simulations but often real data of bone materials is impossible to know. This work investigates the influence of choice of bone materials properties over the results of simulations, showing when and why the materials data are relevant and when the selection of these data becomes irrelevant. With a theoretical approach from continuum mechanics and with a practical example the relationship between material data and comparative metrics like stress, strains and displacements is discussed. When linear and elastic material properties are assumed in a comparative analysis, the effect of the elastic modulus of the material is irrelevant over stress patterns. This statement is true for homogeneous and inhomogeneous materials, in this last case the proportion between the different materials properties must kept constant. In the case of the strains and displacements, there is an inverse proportionality kept constant, between the values of the metrics and the changes in the elastic modulus. These properties allow comparative studies without considering the real elastic materials properties.


PLOS ONE | 2015

3D Computational Mechanics Elucidate the Evolutionary Implications of Orbit Position and Size Diversity of Early Amphibians

Jordi Marcé-Nogué; Josep Fortuny; Soledad De Esteban-Trivigno; Montserrat Sánchez; Lluís Gil; Àngel Galobart

For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs.


Medicina Oral Patologia Oral Y Cirugia Bucal | 2013

Design characteristics, primary stability and risk of fracture of orthodontic mini-implants: Pilot scan electron microscope and mechanical studies

Andre Walter; Heinz Winsauer; Jordi Marcé-Nogué; Sergi Mojal; Andreu Puigdollers

Objectives: Orthodontic mini-implants (OMIs) are increasingly used in orthodontics but can fail for various reasons. This study investigates the effects of OMI design characteristics on the mechanical properties in artificial bone. Material and Methods: Twelve self-drilling OMIs (2 small, 6 medium, 4 large) from 8 manufacturers were tested for their primary stability in simulated medium-high cancellous bone and the risk to fracture in high-density methacrylate blocks. For the assessments of the maximum insertion torque (IT) and torsional fracture (TF) 5 of each OMI were used and for the pull-out strength (POS) 10. The OMIs were inserted with a torque screwdriver (12 sec/360°) until the bottom at 8 mm depth was reached. OMI designs were analyzed with a scan electron microscope (SEM). Results: SEM images revealed a great variation in product refinement. In the whole sample, a cylindrical OMI shape was associated with higher POS (p<0.001) but lower IT (p=0.002) values. The outer and inner OMI diameters were design characteristics well correlated with POS, IT and TF values (ranging from 0.601 to 0.961). Greater thread depth was related to greater POS values (r= 0.628), although OMIs with similar POS values may have different IT values. Thread depth and pitch had some impact on POS. TF depended mainly on the OMI inner (r= 0.961) and outer diameters (r=0.892). A thread depth to outer diameter ratio close to 40% increased TF risk. Conclusions: Although at the same insertion depth the OMI outer and inner diameters are the most important factors for primary stability, other OMI design characteristics (cylindrical vs. conical, thread design) may significantly affect primary stability and torsional fracture. This needs to be considered when selecting the appropriate OMI for the desired orthodontic procedures. Key words:Orthodontic mini-implants, primary stability, insertion torque, pullout strength, torsional fracture.


Scientific Reports | 2017

A biomechanical approach to understand the ecomorphological relationship between primate mandibles and diet

Jordi Marcé-Nogué; Thomas A. Püschel; Thomas M. Kaiser

The relationship between primate mandibular form and diet has been previously analysed by applying a wide array of techniques and approaches. Nonetheless, most of these studies compared few species and/or infrequently aimed to elucidate function based on an explicit biomechanical framework. In this study, we generated and analysed 31 Finite Element planar models of different primate jaws under different loading scenarios (incisive, canine, premolar and molar bites) to test the hypothesis that there are significant differences in mandibular biomechanical performance due to food categories and/or food hardness. The obtained stress values show that in primates, hard food eaters have stiffer mandibles when compared to those that rely on softer diets. In addition, we find that folivores species have the weakest jaws, whilst omnivores have the strongest mandibles within the order Primates. These results are highly relevant because they show that there is a strong association between mandibular biomechanical performance, mandibular form, food hardness and diet categories and that these associations can be studied using biomechanical techniques rather than focusing solely on morphology.


Journal of Anatomy | 2017

Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach

Josep M. Fortuny; Jordi Marcé-Nogué; Dorota Konietzko-Meier

The Late Triassic freshwater ecosystems were occupied by different tetrapod groups including large‐sized anamniotes, such as metoposaurids. Most members of this group of temnospondyls acquired gigantic sizes (up to 5 m long) with a nearly worldwide distribution. The paleoecology of metoposaurids is controversial; they have been historically considered passive, bottom‐dwelling animals, waiting for prey on the bottom of rivers and lakes, or they have been suggested to be active mid‐water feeders. The present study aims to expand upon the paleoecological interpretations of these animals using 3D finite element analyses (FEA). Skulls from two taxa, Metoposaurus krasiejowensis, a gigantic taxon from Europe, and Apachesaurus gregorii, a non‐gigantic taxon from North America, were analyzed under different biomechanical scenarios. Both 3D models of the skulls were scaled to allow comparisons between them and reveal that the general stress distribution pattern found in both taxa is clearly similar in all scenarios. In light of our results, both previous hypotheses about the paleoecology of these animals can be partly merged: metoposaurids probably were ambush and active predators, but not the top predators of these aquatic environments. The FEA results demonstrate that they were particularly efficient at bilateral biting, and together with their characteristically anteropositioned orbits, optimal for an ambush strategy. Nonetheless, the results also show that these animals were capable of lateral strikes of the head, suggesting active hunting of prey. Regarding the important skull size differences between the taxa analyzed, our results suggest that the size reduction in the North American taxon could be related to drastic environmental changes or the increase of competitors. The size reduction might have helped them expand into new ecological niches, but they likely remained fully aquatic, as are all other metoposaurids.


PLOS ONE | 2015

Finite Element Analysis of the Cingulata jaw: an ecomorphological approach to armadillo's diets

Sílvia Serrano-Fochs; Soledad De Esteban-Trivigno; Jordi Marcé-Nogué; Josep Fortuny; Richard A. Fariña

Finite element analyses (FEA) were applied to assess the lower jaw biomechanics of cingulate xenarthrans: 14 species of armadillos as well as one Pleistocene pampathere (11 extant taxa and the extinct forms Vassallia, Eutatus and Macroeuphractus). The principal goal of this work is to comparatively assess the biomechanical capabilities of the mandible based on FEA and to relate the obtained stress patterns with diet preferences and variability, in extant and extinct species through an ecomorphology approach. The results of FEA showed that omnivorous species have stronger mandibles than insectivorous species. Moreover, this latter group of species showed high variability, including some similar biomechanical features of the insectivorous Tolypeutes matacus and Chlamyphorus truncatus to those of omnivorous species, in agreement with reported diets that include items other than insects. It remains unclear the reasons behind the stronger than expected lower jaw of Dasypus kappleri. On the other hand, the very strong mandible of the fossil taxon Vassallia maxima agrees well with the proposed herbivorous diet. Moreover, Eutatus seguini yielded a stress pattern similar to Vassalia in the posterior part of the lower jaw, but resembling that of the stoutly built Macroeuphractus outesi in the anterior part. The results highlight the need for more detailed studies on the natural history of extant armadillos. FEA proved a powerful tool for biomechanical studies in a comparative framework.


International Journal of Oral & Maxillofacial Implants | 2013

Finite Element Comparison of 10 Orthodontic Microscrews with Different Cortical Bone Parameters

Jordi Marcé-Nogué; Andre Walter; Lluís Gil; Andreu Puigdollers

PURPOSE Unlike standard dental implants, the stabilization of orthodontic microscrews removed after treatment is done without osseointegration and achieved by several components: cortical bone thickness (CBT), microscrew geometry, and drilling depth. The purpose of this study was to evaluate 10 different microscrews and the influence of their geometric parameters with different CBT and drilling depths. MATERIALS AND METHODS The influence of geometric parameters in cortical bone was analyzed with a series of computational simulations with finite element models to obtain von Mises stresses and deformations in the microscrew when loaded with a perpendicular traction force of 1 N and considering the angle of incidence as a random parameter. RESULTS There was variability in the angle of incidence, with less clinical influence. Biomechanical parameters such as microscrew diameter, CBT, and drilling depth had significant influences on the results. At a drilling distance of 8 mm, narrow microscrews (Abso Anchor 1.2) showed maximum von Mises stress of 500.698 MPa and maximum deformation in the shank of 0.08549 mm. Microscrews with a diameter of 1.5 mm (Dentaurum, Jeil, Mondeal, Tekka, Spider) showed von Mises stresses ranging from 56.97 to 136 MPa and deformation between 0.0062055 and 0.0476 mm. Microscrews with a diameter of 2.0 mm (Jeil, Mondeal, Tekka) showed von Mises stresses ranging from 17.172 to 54.861 MPa and deformation of 0.000172 to 0.0161 mm. CONCLUSIONS The shape and geometry of an orthodontic microscrew are highly important in its behavior. Optimal characteristics of a microscrew would include a diameter of 2.0 mm, a cylindric shape, a short and wide head, a short and wide shank, and threads of an appropriate size.

Collaboration


Dive into the Jordi Marcé-Nogué's collaboration.

Top Co-Authors

Avatar

Lluís Gil

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Josep M. Fortuny

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Montserrat Sánchez

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar

Àngel Galobart

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soledad De Esteban-Trivigno

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Francesc Roure

Polytechnic University of Catalonia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge