Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Breustedt is active.

Publication


Featured researches published by Jörg Breustedt.


Cell | 2009

Synaptic PRG-1 Modulates Excitatory Transmission via Lipid Phosphate-Mediated Signaling

Thorsten Trimbuch; Prateep Beed; Johannes Vogt; Sebastian Schuchmann; Nikolaus Maier; Michael Kintscher; Jörg Breustedt; Markus Schuelke; Nora Streu; Olga Kieselmann; Irene Brunk; Gregor Laube; Ulf Strauss; Arne Battefeld; Hagen Wende; Carmen Birchmeier; Stefan Wiese; Michael Sendtner; Hiroshi Kawabe; Mika Kishimoto-Suga; Nils Brose; Jan Baumgart; Beate Geist; Junken Aoki; Nic E. Savaskan; Anja U. Bräuer; Jerold Chun; Olaf Ninnemann; Dietmar Schmitz; Robert Nitsch

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


The Journal of Physiology | 2007

Adenosine modulates transmission at the hippocampal mossy fibre synapse via direct inhibition of presynaptic calcium channels

Anja Gundlfinger; Josef Bischofberger; Friedrich W. Johenning; M. Torvinen; Dietmar Schmitz; Jörg Breustedt

The modulation of synaptic transmission by presynaptic ionotropic and metabotropic receptors is an important means to control and dynamically adjust synaptic strength. Even though synaptic transmission and plasticity at the hippocampal mossy fibre synapse are tightly controlled by presynaptic receptors, little is known about the downstream signalling mechanisms and targets of the different receptor systems. In the present study, we identified the cellular signalling cascade by which adenosine modulates mossy fibre synaptic transmission. By means of electrophysiological and optical recording techniques, we found that adenosine activates presynaptic A1 receptors and reduces Ca2+ influx into mossy fibre terminals. Ca2+ currents are directly modulated via a membrane‐delimited pathway and the reduction of presynaptic Ca2+ influx can explain the inhibition of synaptic transmission. Specifically, we found that adenosine modulates both P/Q‐ and N‐type presynaptic voltage‐dependent Ca2+ channels and thereby controls transmitter release at the mossy fibre synapse.


The Journal of Neuroscience | 2004

Assessing the Role of GLUK5 and GLUK6 at Hippocampal Mossy Fiber Synapses

Jörg Breustedt; Dietmar Schmitz

It has been suggested recently that presynaptic kainate receptors (KARs) are involved in short-term and long-term synaptic plasticity at hippocampal mossy fiber synapses. Using genetic deletion and pharmacology, we here assess the role of GLUK5 and GLUK6 in synaptic plasticity at hippocampal mossy fiber synapses. We found that the kainate-induced facilitation was completely abolished in the GLUK6-/- mice, whereas it was unaffected in the GLUK5-/-. Consistent with this finding, synaptic facilitation was reduced in the GLUK6-/- and was normal in the GLUK5-/-. In agreement with these results and ruling out any compensatory effects in the genetic deletion models, application of the GLUK5-specific antagonist LY382884 [(3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid] did not affect short-term and long-term synaptic plasticity at the hippocampal mossy fiber synapses. We therefore conclude that the facilitatory effects of kainate on mossy fiber synaptic transmission are mediated by GLUK6-containing KARs.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2

Natalia L. Kononenko; M. Kasim Diril; Dmytro Puchkov; Michael Kintscher; Seong Joo Koo; Gerit Pfuhl; York Winter; Martin Wienisch; Jürgen Klingauf; Jörg Breustedt; Dietmar Schmitz; Tanja Maritzen; Volker Haucke

Significance Brain function depends on neurotransmission, and alterations in this process are linked to neuropsychiatric disorders. Neurotransmitter release requires the rapid recycling of synaptic vesicles (SVs) by endocytosis. How synapses can rapidly regenerate SVs, yet preserve their molecular composition, is poorly understood. We demonstrate that mice lacking the endocytic protein stonin 2 (Stn2) show changes in exploratory behavior and defects in SV composition, whereas the speed at which SVs are regenerated is increased. As Stn2 is implicated in schizophrenia and autism in humans, our findings bear implications for neuropsychiatric disorders. Neurotransmission depends on the exocytic fusion of synaptic vesicles (SVs) and their subsequent reformation either by clathrin-mediated endocytosis or budding from bulk endosomes. How synapses are able to rapidly recycle SVs to maintain SV pool size, yet preserve their compositional identity, is poorly understood. We demonstrate that deletion of the endocytic adaptor stonin 2 (Stn2) in mice compromises the fidelity of SV protein sorting, whereas the apparent speed of SV retrieval is increased. Loss of Stn2 leads to selective missorting of synaptotagmin 1 to the neuronal surface, an elevated SV pool size, and accelerated SV protein endocytosis. The latter phenotype is mimicked by overexpression of endocytosis-defective variants of synaptotagmin 1. Increased speed of SV protein retrieval in the absence of Stn2 correlates with an up-regulation of SV reformation from bulk endosomes. Our results are consistent with a model whereby Stn2 is required to preserve SV protein composition but is dispensable for maintaining the speed of SV recycling.


Cerebral Cortex | 2010

Munc13-2 Differentially Affects Hippocampal Synaptic Transmission and Plasticity

Jörg Breustedt; Anja Gundlfinger; Frederique Varoqueaux; Kerstin Reim; Nils Brose; Dietmar Schmitz

The short-term dynamics of synaptic communication between neurons provides neural networks with specific frequency-filter characteristics for information transfer. The direction of short-term synaptic plasticity, that is, facilitation versus depression, is highly dependent on and inversely correlated to the basal release probability of a synapse. Amongst the processes implicated in shaping the release probability, proteins that regulate the docking and priming of synaptic vesicles at the active zone are of special importance. Here, we found that a member of the Munc13 protein family of priming proteins, namely Munc13-2, is essential for normal release probability at hippocampal mossy fiber synapses. Paired pulse and frequency facilitation were strongly increased, whereas mossy fiber long-term potentiation was unaffected in the absence of Munc13-2. In contrast, transmission at 3 other types of hippocampal synapses, Schaffer-collateral, associational-commissural, as well as inhibitory synapses onto CA3 pyramidal neurons was unaffected by the loss of Munc13-2.


The Journal of Neuroscience | 2008

Differential cAMP signaling at hippocampal output synapses

Christian Wozny; Nikolaus Maier; Pawel Fidzinski; Jörg Breustedt; Joachim Behr; Dietmar Schmitz

cAMP is a critical second messenger involved in synaptic transmission and synaptic plasticity. Here, we show that activation of the adenylyl cyclase by forskolin and application of the cAMP-analog Sp-5,6-DCl-cBIMPS both mimicked and occluded tetanus-induced long-term potentiation (LTP) in subicular bursting neurons, but not in subicular regular firing cells. Furthermore, LTP in bursting cells was inhibited by protein kinase A (PKA) inhibitors Rp-8-CPT-cAMP and H-89. Variations in the degree of EPSC blockade by the low-affinity competitive AMPA receptor-antagonist γ-d-glutamyl-glycine (γ-DGG), analysis of the coefficient of variance as well as changes in short-term potentiation suggest an increase of glutamate concentration in the synaptic cleft after expression of LTP. We conclude that presynaptic LTP in bursting cells requires activation of PKA by a calcium-dependent adenylyl cyclase while LTP in regular firing cells is independent of elevated cAMP levels. Our results provide evidence for a differential role of cAMP in LTP at hippocampal output synapses.


Journal of Cell Science | 2009

The function of glutamatergic synapses is not perturbed by severe knockdown of 4.1N and 4.1G expression.

Christian Wozny; Jörg Breustedt; Friederike Wolk; Frederique Varoqueaux; Susann Boretius; Aleksandar R. Zivkovic; Antje Neeb; Jens Frahm; Dietmar Schmitz; Nils Brose; Aleksandra Ivanovic

AMPA-type glutamate receptors mediate fast excitatory synaptic transmission in the vertebrate brain. Their surface expression at synapses between neurons is regulated in an activity-dependent and activity-independent manner. The protein machinery that regulates synaptic targeting, anchoring and turnover of AMPA receptors consists of several types of specialized scaffolding proteins. The FERM domain scaffolding proteins 4.1G and 4.1N were previously suggested to act jointly in binding and regulating synaptic trafficking of the AMPA receptor subunits GluR1 and GluR4. To determine the functions of 4.1G and 4.1N in vivo, we generated a mutant mouse line that lacks 4.1G entirely and expresses 4.1N at 22% of wild-type levels. These mice had combined 4.1G and 4.1N protein expression in the hippocampus at 12% of wild-type levels (equivalent to 8-10% of combined GluR1 and GluR4 expression levels). They show a moderate reduction in synaptosomal expression levels of the AMPA receptor subunit GluR1 at 3 weeks of age, but no change in basic glutamatergic synaptic transmission and long-term potentiation in the hippocampus. Our study indicates that 4.1G and 4.1N do not have a crucial role in glutamatergic synaptic transmission and the induction and maintenance of long-term plastic changes in synaptic efficacy.


Nature Communications | 2013

Role of RIM1α in short- and long-term synaptic plasticity at cerebellar parallel fibres

Michael Kintscher; Christian Wozny; Friedrich W. Johenning; Dietmar Schmitz; Jörg Breustedt

The presynaptic terminals of synaptic connections are composed of a complex network of interacting proteins that collectively ensure proper synaptic transmission and plasticity characteristics. The key components of this network are the members of the RIM protein family. Here we show that RIM1α can influence short-term plasticity at cerebellar parallel-fibre synapses. We demonstrate that the loss of a single RIM isoform, RIM1α, leads to reduced calcium influx in cerebellar granule cell terminals, decreased release probability and consequently an enhanced short-term facilitation. In contrast, we find that presynaptic long-term plasticity is fully intact in the absence of RIM1α, arguing against its necessary role in the expression of this important process. Our data argue for a universal role of RIM1α in setting release probability via interaction with voltage-dependent calcium channels at different connections instead of synapse-specific functions.


European Journal of Neuroscience | 2004

Characterization of the inhibitory glycine receptor on entorhinal cortex neurons.

Jörg Breustedt; Dietmar Schmitz; Uwe Heinemann; Volker Schmieden

In addition to the well‐established functional description of the glycine receptor (GlyR) in the spinal cord, GlyR expression has recently been found in higher brain regions, such as the striatum or hippocampus. In this study we have investigated the electrophysiological response of glycine in the rat entorhinal cortex slice. In all recorded cells we found significant current responses to glycine with an EC50 value of about 100 µm. Most importantly, we detected a cross‐inhibition of glycine responses by GABA but not vice versa. These findings are in line with recent published data of cross‐talks between GABAAR and GlyR but indicate a novel type of cross‐inhibition of these receptors in the entorhinal cortex.


PLOS ONE | 2010

Natural Spike Trains Trigger Short- and Long-Lasting Dynamics at Hippocampal Mossy Fiber Synapses in Rodents

Anja Gundlfinger; Jörg Breustedt; David Sullivan; Dietmar Schmitz

Background Synapses exhibit strikingly different forms of plasticity over a wide range of time scales, from milliseconds to hours. Studies on synaptic plasticity typically use constant-frequency stimulation to activate synapses, whereas in vivo activity of neurons is irregular. Methodology/Principal Findings Using extracellular and whole-cell electrophysiological recordings, we have here studied the synaptic responses at hippocampal mossy fiber synapses in vitro to stimulus patterns obtained from in vivo recordings of place cell firing of dentate gyrus granule cells in behaving rodents. We find that synaptic strength is strongly modulated on short- and long-lasting time scales during the presentation of the natural stimulus trains. Conclusions/Significance We conclude that dynamic short- and long-term synaptic plasticity at the hippocampal mossy fiber synapse plays a prominent role in normal synaptic function.

Collaboration


Dive into the Jörg Breustedt's collaboration.

Researchain Logo
Decentralizing Knowledge