Jörg Ebbing
University of Kiel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jörg Ebbing.
Reviews of Geophysics | 2009
Michael Weber; K. Abu-Ayyash; A. Abueladas; Amotz Agnon; Z. Alasonati‐Tašárová; H. Al‐Zubi; A. Babeyko; Yuval Bartov; K. Bauer; Michael Becken; Paul A. Bedrosian; Zvi Ben-Avraham; Günter Bock; M. Bohnhoff; J. Bribach; P. Dulski; Jörg Ebbing; Radwan J. El-Kelani; A. Förster; H.-J. Förster; U. Frieslander; Zvi Garfunkel; H. J. Goetze; V. Haak; Christian Haberland; M. Hassouneh; Stefan L. Helwig; A. Hofstetter; A. Hoffmann‐Rothe; K.-H. Jäckel
Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere.
Geological Society, London, Petroleum Geology Conference series | 2010
Odleiv Olesen; Marco Brönner; Jörg Ebbing; J. Gellein; Laurent Gernigon; J. Koziel; T. Lauritsen; R. Myklebust; Christophe Pascal; M. Sand; D. Solheim; S. Usov
Abstract The Geological Survey of Norway (NGU) has produced new aeromagnetic and gravity maps from Norway and adjacent areas, compiled from ground, airborne and satellite data. Petrophysical measurements on core samples, hand specimens and on in situ bedrock exposures are essential for the interpretation of these maps. Onshore, the most prominent gravity and magnetic anomalies are attributed to lower crustal rocks that have been brought closer to the surface. The asymmetry of the gravity anomalies along the Lapland Granulite Belt and Kongsberg–Bamble Complex, combined with the steep gradient, points to the overthrusted high-density granulites as being the main source of the observed anomalies. The Kongsberg–Bamble anomaly can be traced southwards through the Kattegat to southern Sweden. This concept of gravity field modelling can also be applied to the Mid-Norwegian continental shelf and could partially explain the observed high-density rocks occurring below the More and Voring basins and in the Lofoten area. Extrapolations of Late-Caledonian detachment structures occurring on the mainland can be traced on aeromagnetic and gravimetric images towards the NW across the continental margin. Subcropping Late Palaeozoic to Cenozoic sedimentary units along the mid-Norwegian coast produce a conspicuous magnetic anomaly pattern. The asymmetry of the low-amplitude anomalies, with a steep gradient and a negative anomaly to the east and a gentler gradient to the west, relates the anomalies to gently westward dipping strata. Recent aeromagnetic surveys in the Barents Sea have revealed negative magnetic anomalies associated with shallow salt diapirs. Buried Quaternary channels partly filled with gravel and boulders of crystalline rocks generate magnetic anomalies in the North Sea. The new maps also show that the opening of the Norwegian–Greenland Sea occurred along stable continental margins without offsets across minor fracture zones, or involving jumps in the spreading axis. A triple junction formed at 48 Ma between the Lofoten and Norway Basins.
Geological Society, London, Special Publications | 2011
Carla Braitenberg; Patrizia Mariani; Jörg Ebbing; Michal Sprlak
Abstract The crustal structure of northern Africa is puzzling, large areas being of difficult access and concealed by the Sahara. The new global gravity models are of unprecedented precision and spatial resolution and offer a new possibility to reveal the structure of the lithosphere beneath the Sahara. The gravity gradients correlate better than gravity with geological features such as rifts, fold belts and magmatic deposits and intrusions. They are an ideal tool to follow geological units (e.g. basement units) below a stratigraphic layer of varying density (e.g. sediments). We focus on the Chad lineament, a 1300 km arcuate feature located between the west and central African rift system. The gravity fields show differences between the lineament and the west and central African rift system. Along the centre of the lineament high-density rocks must be present, which relate to either magmatic or metamorphic rocks. This is very different to the lineaments of the western and central-west African rift system which are filled with sediments. Considering present models of rifting and the absence of topography, the lineament cannot be coeval to the west and central African rift system and is most likely older. We suggest that the lineament is a structural element of the Saharan Metacraton.
Geophysical Prospecting | 2014
Alan Reid; Jörg Ebbing; Susan J. Webb
Window-based Euler deconvolution is commonly applied to magnetic and sometimes to gravity interpretation problems. For the deconvolution to be geologically meaningful, care must be taken to choose parameters properly. The following proposed process design rules are based partly on mathematical analysis and partly on experience. 1. The interpretation problem must be expressible in terms of simple structures with integer Structural Index (SI) and appropriate to the expected geology and geophysical source. 2. The field must be sampled adequately, with no significant aliasing. 3. The grid interval must fit the data and the problem, neither meaninglessly overgridded nor so sparsely gridded as to misrepresent relevant detail. 4. The required gradient data (measured or calculated) must be valid,with sufficiently low noise, adequate representation of necessary wavelengths and no edge-related ringing. 5. The deconvolution window size must be at least twice the original data spacing (line spacing or observed grid spacing) and more than half the desired depth of investigation. 6. The ubiquitous sprays of spurious solutions must be reduced or eliminated by judicious use of clustering and reliability criteria, or else recognized and ignored during interpretation. 7. The process should be carried out using Cartesian coordinates if the software is a Cartesian implementation of the Euler deconvolution algorithm (most accessible implementations are Cartesian). If these rules are not adhered to, the process is likely to yield grossly misleading results. An example from southern Africa demonstrates the effects of poor parameter choices.
Geological Society, London, Petroleum Geology Conference series | 2010
R. F. Reynisson; Jörg Ebbing; E. R. Lundin; P. T. Osmundsen
Abstract Anomalously high velocity and high density bodies have been detected in the lower crust on the mid-Norwegian margin. The lower crustal bodies (LCB) are pronounced on the More and Voring margins segments and have mainly been interpreted as either magmatic or high-grade metamorphic in origin. Evolutionary models of the whole margin are heavily affected by the interpretation of the LCB and so are estimates of vertical movements and thermal structure in the area. A 3D gravity and magnetic model of the mid-Norwegian margin was constructed to map the main geological features of the margin and acquire the distribution of the LCB. The model utilizes the most recent potential field compilations on the margin and is constrained by extensive reflection seismic data and published refraction profiles. Further constraints on the model were attained from studying the isostatic state of the lithosphere. We present a map showing the distribution of the different LCB and discuss the implications for the structural and thermal evolution of the margin. The properties of the LCB vary across the margin and at least three different processes may be responsible for their existence. The LCB is commonly interpreted as igneous rock either intruded into the lower crust or underplated beneath it. The distribution of the LCB along the Voring margin has an apparent correlation with the offshore prolongations of major onshore detachments stemming from Late Caledonian orogenic collapse. This may point towards some relation between the LCB and these old zones of weakness and that the LCB represents high-grade metamorphic rocks. Detailed modelling on the More margin shows a spatial link between parts of the LCB and extremely thin crustal thickness, suggesting a serpentinized exhumed mantle origin.
Journal of Geophysical Research | 2015
B. C. Root; W. van der Wal; Pavel Novák; Jörg Ebbing; L.L.A. Vermeersen
In the central part of Fennoscandia, the crust is currently rising, because of the delayed response of the viscous mantle to melting of the Late Pleistocene ice sheet. This process, called Glacial Isostatic Adjustment (GIA), causes a negative anomaly in the present-day static gravity field as isostatic equilibrium has not been reached yet. Several studies have tried to use this anomaly as a constraint on models of GIA, but the uncertainty in crustal and upper mantle structures has not been fully taken into account. Therefore, our aim is to revisit this using improved crustal models and compensation techniques. We find that in contrast with other studies, the effect of crustal anomalies on the gravity field cannot be effectively removed, because of uncertainties in the crustal and upper mantle density models. Our second aim is to estimate the effects on geophysical models, which assume isostatic equilibrium, after correcting the observed gravity field with numerical models for GIA. We show that correcting for GIA in geophysical modelling can give changes of several kilometer in the thickness of structural layers of modeled lithosphere, which is a small but significant correction. Correcting the gravity field for GIA prior to assuming isostatic equilibrium and inferring density anomalies might be relevant in other areas with ongoing postglacial rebound such as North America and the polar regions.
Scientific Reports | 2016
J Bouman; Jörg Ebbing; M Fuchs; Josef Sebera; V Lieb; Wolfgang Szwillus; Roger Haagmans; Pavel Novák
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.
Geological Society, London, Special Publications | 2017
C. Haase; Jörg Ebbing; Thomas Funck
Abstract We present a 3D regional crustal model for the North Atlantic, which is based on the integration of seismic constraints and gravity data. The model addresses the crustal thickness geometry, and includes information on sedimentary thickness, the presence of high-velocity zones in the lower crust, and information on the crustal density distribution in the continental and oceanic domains. Using an iterative forward- and inverse-modelling approach, we adhere to the seismic constraints within their uncertainty, but manage to enhance the crustal geometry in areas where seismic data are sparse or absent. A number of basins are resolved with more detail. Recently released seismic reflection data beneath the NE Greenland Shelf allowed for a major improvement of the crustal thickness estimates. Estimated Moho depths beneath the basins there vary between 15 and 25 km, which is compatible with the conjugate Norwegian margin. A major lower-crustal seismic velocity anomaly in the vicinity of the Greenland–Iceland–Faroe Ridge complex is supported by density modelling. We discuss the validity and uncertainties of our model assumptions and discuss the correlation with the main structural elements of the North Atlantic.
Geological Society, London, Memoirs | 2011
Stephanie C. Werner; Jörg Ebbing; Tamara P. Litvinova; Odleiv Olesen
Abstract New gravity and magnetic anomaly maps for the Barents and Kara Sea region only allow mapping of tectonic features where the thick sedimentary cover is tectonically disturbed. Maps of sedimentary thickness and depth to top basement and the Moho differ between the western and eastern Barents Sea, although detailed thickness and depth estimates require calibration by seismic data. Internal plate boundaries created during the amalgamation of the Barents Sea region were not detected using potential field data.
Computers & Geosciences | 2016
Eldar Baykiev; Jörg Ebbing; Marco Brönner; Karl Fabian
A newly developed software package to calculate the magnetic field in a spherical coordinate system near the Earths surface and on satellite height is shown to produce reliable modeling results for global and regional applications. The discretization cells of the model are uniformly magnetized spherical prisms, so called tesseroids. The presented algorithm extends an existing code for gravity calculations by applying Poissons relation to identify the magnetic potential with the sum over pseudogravity fields of tesseroids.By testing different lithosphere discretization grids it is possible to determine the optimal size of tesseroids for field calculations on satellite altitude within realistic measurement error bounds. Also the influence of the Earths ellipticity upon the modeling result is estimated and global examples are studied.The new software calculates induced and remanent magnetic fields for models at global and regional scale. For regional models far-field effects are evaluated and discussed. This provides bounds for the minimal size of a regional model that is necessary to predict meaningful satellite total field anomalies over the corresponding area. Tool for computation of the magnetic field of spherical prisms was developed.Appropriate width of spherical prisms for modeling is 1 or less degrees.Elliptic and spherical lithospheric models have approximately 2nT difference.15° Extension of a regional model is sufficient to avoid big edge effects.