Jörg Freyhof
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jörg Freyhof.
Science | 2013
Henrique M. Pereira; Simon Ferrier; Michele Walters; Gary N. Geller; R.H.G. Jongman; Robert J. Scholes; Michael William Bruford; Neil Brummitt; Stuart H. M. Butchart; A C Cardoso; E Dulloo; Daniel P. Faith; Jörg Freyhof; Richard D. Gregory; Carlo H. R. Heip; Robert Höft; George C. Hurtt; Walter Jetz; Daniel S. Karp; Melodie A. McGeoch; D Obura; Yusuke Onoda; Nathalie Pettorelli; Belinda Reyers; Roger Sayre; Joern P. W. Scharlemann; Simon N. Stuart; Eren Turak; Matt Walpole; Martin Wegmann
A global system of harmonized observations is needed to inform scientists and policy-makers. Reducing the rate of biodiversity loss and averting dangerous biodiversity change are international goals, reasserted by the Aichi Targets for 2020 by Parties to the United Nations (UN) Convention on Biological Diversity (CBD) after failure to meet the 2010 target (1, 2). However, there is no global, harmonized observation system for delivering regular, timely data on biodiversity change (3). With the first plenary meeting of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) soon under way, partners from the Group on Earth Observations Biodiversity Observation Network (GEO BON) (4) are developing—and seeking consensus around—Essential Biodiversity Variables (EBVs) that could form the basis of monitoring programs worldwide.
Molecular Phylogenetics and Evolution | 2010
Kevin L. Tang; Mary K. Agnew; M. Vincent Hirt; Tetsuya Sado; Leah M. Schneider; Jörg Freyhof; Zohrah Sulaiman; Ernst R. Swartz; Chavalit Vidthayanon; Masaki Miya; Kenji Saitoh; Andrew M. Simons; Robert M. Wood; Richard L. Mayden
The members of the cyprinid subfamily Danioninae form a diverse and scientifically important group of fishes, which includes the zebrafish, Danio rerio. The diversity of this assemblage has attracted much scientific interest but its monophyly and the relationships among its members are poorly understood. The phylogenetic relationships of the Danioninae are examined herein using sequence data from mitochondrial cytochrome b, mitochondrial cytochrome c oxidase I, nuclear opsin, and nuclear recombination activating gene 1. A combined data matrix of 4117 bp for 270 taxa was compiled and analyzed. The resulting topology supports some conclusions drawn by recent studies on the group and certain portions of the traditional classification, but our results also contradict key aspects of the traditional classification. The subfamily Danioninae is not monophyletic, with putative members scattered throughout Cyprinidae. Therefore, we restrict Danioninae to the monophyletic group that includes the following genera: Amblypharyngodon, Barilius, Cabdio, Chela, Chelaethiops, Danio, Danionella, Devario (including Inlecypris), Esomus, Horadandia, Laubuca, Leptocypris, Luciosoma, Malayochela, Microdevario, Microrasbora, Nematabramis, Neobola, Opsaridium, Opsarius, Paedocypris, Pectenocypris, Raiamas, Rasbora (including Boraras and Trigonostigma), Rasboroides, Salmostoma, Securicula, and Sundadanio. This Danioninae sensu stricto is divided into three major lineages, the tribes Chedrini, Danionini, and Rasborini, where Chedrini is sister to a Danionini-Rasborini clade. Each of these tribes is monophyletic, following the restriction of Danioninae. The tribe Chedrini includes a clade of exclusively African species and contains several genera of uncertain monophyly (Opsarius, Raiamas, Salmostoma). Within the tribe Rasborini, the species-rich genus Rasbora is rendered non-monophyletic by the placement of two monophyletic genera, Boraras and Trigonostigma, hence we synonymize those two genera with Rasbora. In the tribe Danionini, the miniature genus Danionella is recovered as the sister group of Danio, with D. nigrofasciatus sister to D. rerio.
Molecular Ecology Resources | 2014
Matthias F. Geiger; F. Herder; Michael T. Monaghan; Vítor Carvalho Almada; R. Barbieri; Michel Bariche; Patrick Berrebi; Jörg Bohlen; M. Casal-Lopez; G. B. Delmastro; Gaël Pierre Julien Denys; Agnès Dettai; Ignacio Doadrio; E. Kalogianni; H. Kärst; Maurice Kottelat; M. Kovačić; M. Laporte; M. Lorenzoni; Z. Marčić; Müfit Özuluğ; Anabel Perdices; S. Perea; Henri Persat; S. Porcelotti; C. Puzzi; Joana Isabel Robalo; Radek Šanda; M. Schneider; Věra Šlechtová
Incomplete knowledge of biodiversity remains a stumbling block for conservation planning and even occurs within globally important Biodiversity Hotspots (BH). Although technical advances have boosted the power of molecular biodiversity assessments, the link between DNA sequences and species and the analytics to discriminate entities remain crucial. Here, we present an analysis of the first DNA barcode library for the freshwater fish fauna of the Mediterranean BH (526 spp.), with virtually complete species coverage (498 spp., 98% extant species). In order to build an identification system supporting conservation, we compared species determination by taxonomists to multiple clustering analyses of DNA barcodes for 3165 specimens. The congruence of barcode clusters with morphological determination was strongly dependent on the method of cluster delineation, but was highest with the general mixed Yule‐coalescent (GMYC) model‐based approach (83% of all species recovered as GMYC entity). Overall, genetic morphological discontinuities suggest the existence of up to 64 previously unrecognized candidate species. We found reduced identification accuracy when using the entire DNA‐barcode database, compared with analyses on databases for individual river catchments. This scale effect has important implications for barcoding assessments and suggests that fairly simple identification pipelines provide sufficient resolution in local applications. We calculated Evolutionarily Distinct and Globally Endangered scores in order to identify candidate species for conservation priority and argue that the evolutionary content of barcode data can be used to detect priority species for future IUCN assessments. We show that large‐scale barcoding inventories of complex biotas are feasible and contribute directly to the evaluation of conservation priorities.
Hydrobiologia | 2006
Jinquan Yang; Shunping He; Jörg Freyhof; Kai Witte; Huanzhang Liu
The Gobioninae are a group of morphologically and ecologically diverse Eurasian freshwater cyprinid fishes. The intergeneric relationships of this group are unresolved and the possible monophyly of this subfamily remains to be established. We used complete mitochondrial cytochrome b gene sequences from most genera within the gobionine group, in addition to a selection of cyprinid outgroups, to investigate the possible monophyly of this group and resolve the interrelationships within the group. Our results support the monophyly of the Gobioninae and identify four monophyletic groups within the subfamily; the Hemibarbus group, the Sarcocheilichthys group, the Gobio group, and the Pseudogobio group. The morphologically aberrant genera Gobiobotia, Xenophysogobio and Gobiocypris are included in the Gobioninae, with the latter a sister group of Gnathopogon.
Oecologia | 2007
Ingeborg Palm Helland; Jörg Freyhof; Peter Kasprzak; Thomas Mehner
Recent studies have indicated that temporal mismatches between interacting populations may be caused by consequences of global warming, for example rising spring temperatures. However, little is known about the impact of spatial temperature gradients, their vulnerability to global warming, and their importance for interacting populations. Here, we studied the vertical distribution of two planktivorous fish species (Coregonus spp.) and their zooplankton prey in the deep, oligotrophic Lake Stechlin (Germany). The night-time vertical centre of gravity both of the fish populations and of two of their prey groups, daphnids and copepods, were significantly correlated to the seasonally varying water temperature between March and December 2005. During the warmer months, fish and zooplankton occurred closer to the surface of the lake and experienced higher temperatures. The Coregonus populations differed significantly in their centre of gravity; hence, also, the temperature experienced by the populations was different. Likewise, daphnids and copepods occurred in different water depths and hence experienced different temperatures at least during the summer months. We conclude that any changes in the vertical temperature gradient of the lake as a result of potential future global warming may impact the two fish populations differently, and may shape interaction strength and timing between fish and their zooplankton prey.
BMC Evolutionary Biology | 2013
Radka Symonová; Zuzana Majtánová; Alexandr Sember; Georg Bo Staaks; Jörg Bohlen; Jörg Freyhof; Marie Rábová; Petr Ráb
BackgroundSympatric species pairs are particularly common in freshwater fishes associated with postglacial lakes in northern temperate environments. The nature of divergences between co-occurring sympatric species, factors contributing to reproductive isolation and modes of genome evolution is a much debated topic in evolutionary biology addressed by various experimental tools. To the best of our knowledge, nobody approached this field using molecular cytogenetics. We examined chromosomes and genomes of one postglacial species pair, sympatric European winter-spawning Coregonus albula and the local endemic dwarf-sized spring-spawning C. fontanae, both originating in Lake Stechlin. We have employed molecular cytogenetic tools to identify the genomic differences between the two species of the sympatric pair on the sub-chromosomal level of resolution.ResultsFluorescence in situ hybridization (FISH) experiments consistently revealed a distinct variation in the copy number of loci of the major ribosomal DNA (the 45S unit) between C. albula and C. fontanae genomes. In C. fontanae, up to 40 chromosomes were identified to bear a part of the major ribosomal DNA, while in C. albula only 8–10 chromosomes possessed these genes. To determine mechanisms how such extensive genome alternation might have arisen, a PCR screening for retrotransposons from genomic DNA of both species was performed. The amplified retrotransposon Rex1 was used as a probe for FISH mapping onto chromosomes of both species. These experiments showed a clear co-localization of the ribosomal DNA and the retrotransposon Rex1 in a pericentromeric region of one or two acrocentric chromosomes in both species.ConclusionWe demonstrated genomic consequences of a rapid ecological speciation on the level undetectable by neither sequence nor karyotype analysis. We provide indirect evidence that ribosomal DNA probably utilized the spreading mechanism of retrotransposons subsequently affecting recombination rates in both genomes, thus, leading to a rapid genome divergence. We attribute these extensive genome re-arrangements associated with speciation event to stress-induced retrotransposons (re)activation. Such causal interplay between genome differentiation, retrotransposons (re)activation and environmental conditions may become a topic to be explored in a broader genomic context in future evolutionary studies.
Molecular Phylogenetics and Evolution | 2012
Boris A. Levin; Jörg Freyhof; Zdeněk Lajbner; Silvia Perea; Asghar Abdoli; Muhammet Gaffaroğlu; Müfit Özuluğ; Haikaz R. Rubenyan; Vladimir B. Salnikov; Ignacio Doadrio
We reconstructed the matrilineal phylogeny of Asian algae-eating fishes of the genus Capoeta based on complete mitochondrial gene for cytochrome b sequences obtained from 20 species sampled from the majority of the range and 44 species of closely related barbs of the genera Barbus s. str. and Luciobarbus. The results of this study show that Capoeta forms a strongly supported monophyletic subclade nested within the Luciobarbus clade, suggesting that specialized scraping morphology appeared once in the evolutionary history of the genus. We detected three main groups of Capoeta: the Mesopotamian group, which includes three species from the Tigris-Euphrates system and adjacent water bodies, the Anatolian-Iranian group, which has the most diversified structure and encompasses many species distributed throughout Anatolian and Iranian inland waters, and the Aralo-Caspian group, which consists of species distributed in basins of the Caspian and Aral Seas, including many dead-end rivers in Central Asia and Northern Iran. The most probable origination pathway of the genus Capoeta is hypothesized to occur as a result of allopolyploidization. The origin of Capoeta was found around the Langhian-Serravallian boundary according to our molecular clock. The diversification within the genus occurred along Middle Miocene-Late Pliocene periods.
Zoology in The Middle East | 2004
Müfit Özuluğ; Nurettin Meriç; Jörg Freyhof
Abstract The Prussian Carp, Carassius gibelio (Bloch, 1782), was first reported from the European part of Turkey in 1988. Today, it seems to be widespread and may occur in all larger water bodies. The authors discuss whether this species has really invaded Trace during the last 10–15 years. It might previously have been confused with C. carassius.
Environmental Biology of Fishes | 1998
Antje Bischoff; Jörg Freyhof
Habitat preference and diet of 0+ barbel were studied both on a meso- and a microhabitat scale in the River Sieg (Germany) between May 1993 and January 1995. Changes in mesohabitat use were observed. Barbel moved from shallow bays (larvae and step 1 juveniles) to gravel banks, and subsequently, to riffles (step 2 juveniles). Size-dependent shifts in microhabitat-use were observed during the second juvenile step. These juveniles left the shoreline and preferred microhabitats with stronger current velocities. 0+ barbel in riffles fed on Chironomidae and Ephemeroptera. No remarkable shifts in diet were detected between larvae and juveniles. We suggest that the observed ontogenetic shifts to habitats with high food supply and low predation pressure might contribute to the high abundances of barbel in the River Sieg.
Molecular Phylogenetics and Evolution | 2009
Vítor Carvalho Almada; Joana Isabel Robalo; André Levy; Jörg Freyhof; Giacomo Bernardi; Ignacio Doadrio
In this paper, the phylogenetic relationships of the marine blenny Salaria pavo and the freshwater S. fluviatilis and S. economidisi were analyzed using four molecular markers: the mitochondrial 12S rRNA, 16S rRNA, and the control region and the nuclear first intron of the S7 ribosomal protein. The monophyly of Salaria is supported, as well as that of S. pavo and that of all the freshwater members of Salaria. Thus, the present results support a single origin for all freshwater Mediterranean blenniids. Our results reject the placement of the species of Salaria in the genus Lipophrys as proposed in previous studies. Using a molecular clock calibrated with trans-Isthmian geminate blenniid species, the split between the ancestor of the freshwater lineage and the ancestor of S. pavo is tentatively placed in the Middle Miocene (well before the Messinian). The marine S. pavo displays a very low level of intraspecific sequence divergence consistent with a Pleistocene bottleneck. S. fluviatilis is a paraphyletic entity with S. economidisi nested within it. A Moroccan population of S. fluviatilis is more divergent than S. economidisi, both in nuclear and mitochondrial genes. Fish from Israel together with some Turkish samples represent the second oldest split. It is argued that these populations may represent cryptic species. Thus, further studies on the taxonomy of these freshwater blennies are urgently needed.
Collaboration
Dive into the Jörg Freyhof's collaboration.
International Union for Conservation of Nature and Natural Resources
View shared research outputs