Jörg Göttlicher
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jörg Göttlicher.
Advanced Materials | 2015
Daniel Volz; Ying Chen; Manuela Wallesch; Rui Liu; Charlotte Fléchon; Daniel M. Zink; Jana Friedrichs; Harald Flügge; Ralph Steininger; Jörg Göttlicher; C. Heske; L. Weinhardt; Stefan Bräse; Franky So; Thomas Baumann
The substitution of rare metals such as iridium and platinum in light-emitting materials is a key step to enable low-cost mass-production of organic light-emitting diodes (OLEDs). Here, it is demonstrated that using a solution-processed, fully bridged dinuclear Cu(I)-complex can yield very high efficiencies. An optimized device gives a maximum external quantum efficiency of 23 ± 1% (73 ± 2 cd A(-1) ).
American Mineralogist | 2011
Juraj Majzlan; Bronislava Lalinská; Martin Chovan; Ulrich Bläß; Björn Brecht; Jörg Göttlicher; Ralph Steininger; Katrin Hug; Sibylle Ziegler; Johannes Gescher
Abstract The mineralogical composition of mining wastes deposited in voluminous tailing impoundments around the world is the key factor that controls retention and release of pollutants. Here we report a detailed mineralogical, geochemical, and microbiological investigation of two tailing impoundments near the town of Pezinok, Slovakia. The primary objective of this study was the mineralogy that formed in the impoundment after the deposition of the tailings (so-called tertiary minerals). Tertiary minerals include oxyhydroxides of Fe, Sb, As, Ca and are present as grains and as rims on primary ore minerals. X-ray microdiffraction data show that the iron oxyhydroxides with abundant As are X-ray amorphous. The limiting (lowest) Fe/As (wt/wt%) ratio in this material is 1.5; beyond this ratio, the hydrous ferric oxide does not retain arsenic. The grains with less As and little to moderate amounts of Sb are goethite; the grains where Sb dominates over Fe are poorly crystalline tripuhyite (FeSbO4). Even the most heavily contaminated samples (up to 29 wt% As2O5) are populated with diverse communities of microorganisms including typical arsenic-resistant heterotrophic species as well as iron reducers and sulfur oxidizers. Several recovered clones cluster within phylogenetic groups that are solely based on environmental sequences and do not contain a single cultivated species, thus calling for more work on such extreme environments.
Inorganic Chemistry | 2014
Daniel Volz; Manuela Wallesch; Stephan L. Grage; Jörg Göttlicher; Ralph Steininger; David Batchelor; Tonya Vitova; Anne S. Ulrich; C. Heske; L. Weinhardt; Thomas Baumann; Stefan Bräse
Luminescent Cu(I) complexes are interesting candidates as dopants in organic light-emitting diodes (OLEDs). However, open questions remain regarding the stability of such complexes in solution and therefore their suitability for solution processing. Since the emission behavior of Cu(I) emitters often drastically differs between bulk and thin film samples, it cannot be excluded that changes such as partial decomposition or formation of alternative emitting compounds upon processing are responsible. In this study, we present three particularly interesting candidates of the recently established copper-halide-(diphenylphosphino)pyridine derivatives (PyrPHOS) family that do not show such changes. We compare single crystals, amorphous bulk samples, and neat thin films in order to verify whether the material remains stable upon processing. Solid-state nuclear magnetic resonance (MAS (31)P NMR) was used to investigate the electronic environment of the phosphorus atoms, and X-ray absorption spectroscopy at the Cu K edge provides insight into the local electronic and geometrical environment of the copper(I) metal centers of the samples. Our results suggest that--unlike other copper(I) complexes--the copper-halide-PyrPHOS clusters are significantly more stable upon processing and retain their initial structure upon quick precipitation as well as thin film processing.
Scientific Reports | 2015
D. König; S. Gutsch; Hubert Gnaser; Michael Wahl; Michael Kopnarski; Jörg Göttlicher; Ralph Steininger; Margit Zacharias; Daniel Hiller
Up to now, no consensus exists about the electronic nature of phosphorus (P) as donor for SiO2-embedded silicon nanocrystals (SiNCs). Here, we report on hybrid density functional theory (h-DFT) calculations of P in the SiNC/SiO2 system matching our experimental findings. Relevant P configurations within SiNCs, at SiNC surfaces, within the sub-oxide interface shell and in the SiO2 matrix were evaluated. Atom probe tomography (APT) and its statistical evaluation provide detailed spatial P distributions. For the first time, we obtain ionisation states of P atoms in the SiNC/SiO2 system at room temperature using X-ray absorption near edge structure (XANES) spectroscopy, eliminating structural artefacts due to sputtering as occurring in XPS. K energies of P in SiO2 and SiNC/SiO2 superlattices (SLs) were calibrated with non-degenerate P-doped Si wafers. results confirm measured core level energies, connecting and explaining XANES spectra with h-DFT electronic structures. While P can diffuse into SiNCs and predominantly resides on interstitial sites, its ionization probability is extremely low, rendering P unsuitable for introducing electrons into SiNCs embedded in SiO2. Increased sample conductivity and photoluminescence (PL) quenching previously assigned to ionized P donors originate from deep defect levels due to P.
Environmental Science & Technology | 2013
Ralph M. Bolanz; Maria Wierzbicka-Wieczorek; Mária Čaplovičová; Peter Uhlík; Jörg Göttlicher; Ralph Steininger; Juraj Majzlan
Hematite (α-Fe2O3) is one of the most common iron oxides and a sink for the toxic metalloid arsenic. Arsenic can be immobilized by adsorption to the hematite surface; however, the incorporation of As in hematite was never seriously considered. In our study we present evidence that, besides adsorption, the incorporation of As into the hematite crystals can be of great relevance for As immobilization. With the coupling of nanoresolution techniques and X-ray absorption spectroscopy the presence of As (up to 1.9 wt %) within the hematite crystals could be demonstrated. The incorporated As(5+) displays a short-range order similar to angelellite-like clusters, epitaxially intergrown with hematite. Angelellite (Fe4As2O11), a triclinic iron arsenate with structural relations to hematite, can epitaxially intergrow along the (210) plane with the (0001) plane of hematite. This structural composite of hematite and angelellite-like clusters represents a new immobilization mechanism and potentially long-lasting storage facility for As(5+) by iron oxides.
Environmental Science & Technology | 2015
Andreas Voegelin; Numa Pfenninger; Julia Petrikis; Juraj Majzlan; Michael Plötze; Anna-Caterina Senn; Stefan Mangold; Ralph Steininger; Jörg Göttlicher
We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.
Environmental Pollution | 2010
Roberto Terzano; Anna Santoro; Matteo Spagnuolo; Bart Vekemans; Luca Medici; Koen Janssens; Jörg Göttlicher; Melissa A. Denecke; Stefan Mangold; Pacifico Ruggiero
Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg(-1). Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as mu-XRF, mu-XRD and mu-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 microm. The main Hg-species found in the soil samples were metacinnabar (beta-HgS), cinnabar (alpha-HgS), corderoite (Hg(3)S(2)Cl(2)), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 microm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution.
Science of The Total Environment | 2015
Elisabeth Eiche; F. Bardelli; A. Nothstein; L. Charlet; Jörg Göttlicher; Ralph Steininger; Karaj S. Dhillon; U.S. Sadana
The concentration, distribution, and speciation of selenium in different parts of wheat and Indian mustard, grown in a seleniferous area in Punjab, were investigated using synchrotron based (XAS) and classical acid digestion and extraction methods. The analyses revealed a high Se enrichment in all investigated plant parts, with Se levels in the range of 133-931 mg/kg (dry weight, dw). Such high Se enrichment is mainly due to the considerable amounts of easily available Se detected in the soil, which are renewed on a yearly basis to some extent via irrigation. Speciation analysis in soil and plants indicated selenate and organic Se as major Se species taken up by plants, with a minor presence of selenite. The analyses also revealed that the highest Se enrichment occurs in the upper plant parts, in agreement with the high uptake rate and mobility of selenate within plants. In both wheat and mustard, highest Se enrichments were found in leaves (387 mg/kg·dw in wheat and 931 mg/kg·dw in mustard). Organic species (dimethylselenide and methylselenocysteine) were found in different parts of both plants, indicating that an active detoxification response to the high Se uptake is taking place through methylation and/or volatilization. The high proportion of selenate in wheat and mustard leaves (47% and 70%, respectively) is the result of the inability of the plant metabolism to completely transform selenate to non-toxic organic forms, if oversupplied. Methylselenocysteine, a common Se species in accumulating plants, was detected in wheat, suggesting that, in the presence of high Se concentration, this plant develops similar response mechanisms to accumulator plants.
Environmental Science & Technology | 2017
Ivan Pidchenko; Kristina O. Kvashnina; Tadahiro Yokosawa; Nicolas Finck; Sebastian Bahl; Dieter Schild; Robert Polly; Elke Bohnert; André Rossberg; Jörg Göttlicher; Kathy Dardenne; Jörg Rothe; Thorsten Schäfer; Horst Geckeis; Tonya Vitova
Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).
Environmental Science & Technology | 2015
Zhi-Guo Yu; Stefan Peiffer; Jörg Göttlicher; Klaus-Holger Knorr
The reactivity of natural dissolved organic matter toward sulfide and has not been well studied with regard to electron transfer, product formation, and kinetics. We thus investigated the abiotic transformation of sulfide upon reaction with reduced and nonreduced Sigma-Aldrich humic acid (HA), at pH 6 under anoxic conditions. Sulfide reacted with nonreduced HA at conditional rate constants of 0.227-0.325 h(-1). The main transformation products were elemental S (S0) and thiosulfate (S2O3(2-)), yielding electron accepting capacities of 2.82-1.75 μmol e- (mg C)(-1). Native iron contents in the HA could account for only 6-9% of this electron transfer. About 22-37% of S reacted with the HA to form organic S (Sorg). Formation of Sorg was observed and no inorganic transformation products occurred for reduced HA. X-ray absorption near edge structure spectroscopy supported Sorg to be mainly zerovalent, such as thiols, organic di- and polysulfides, or heterocycles. In conclusion, our results demonstrate that HA can abiotically reoxidize sulfide in anoxic environments at rates competitive to sulfide oxidation by molecular oxygen or iron oxides.
Collaboration
Dive into the Jörg Göttlicher's collaboration.
Swiss Federal Institute of Aquatic Science and Technology
View shared research outputs