Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Hockemeyer is active.

Publication


Featured researches published by Jörg Hockemeyer.


Journal of Neurochemistry | 2004

Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure

Davide Quarta; Sergi Ferré; Marcello Solinas; Zhi-Bing You; Jörg Hockemeyer; Patrizia Popoli; Steven R. Goldberg

Previous studies have demonstrated opposing roles for adenosine A1 and A2A receptors in the modulation of extracellular levels of glutamate and dopamine in the striatum. In the present study, acute systemic administration of motor‐activating doses of the A2A receptor antagonist MSX‐3 significantly decreased extracellular levels of dopamine and glutamate in the shell of the rat nucleus accumbens (NAc) and counteracted both dopamine and glutamate release induced by systemic administration of motor‐activating doses of either the A1 receptor antagonist CPT or caffeine. Furthermore, exposure to caffeine in the drinking water (1 mg/mL, 14 days) resulted in tolerance to the effects of systemic injection of CPT or caffeine, but not MSX‐3, on extracellular levels of dopamine and glutamate in the NAc shell. The present results show: first, the existence of opposite tonic effects of adenosine on extracellular levels of dopamine and glutamate in the shell of the NAc mediated by A1 and A2A receptors; second, that complete tolerance to caffeines dopamine‐ and glutamate‐releasing effects which develops after chronic caffeine exposure is attributable to an A1 receptor‐mediated mechanism. Development of tolerance to the dopamine‐releasing effects of caffeine in the shell of the NAc may explain its weak addictive properties and atypical psychostimulant profile.


Neuroscience | 2010

Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and dopamine D2 receptors.

Andrew M. Farrar; Kristen N. Segovia; Patrick A. Randall; Eric J. Nunes; Lyndsey E. Collins; Colin M. Stopper; Russell G. Port; Jörg Hockemeyer; Christa E. Müller; Mercè Correa; John D. Salamone

Nucleus accumbens dopamine (DA) is a critical component of the brain circuitry regulating work output in reinforcement-seeking behavior and effort-related choice behavior. Moreover, there is evidence of an interaction between DA D(2) and adenosine A(2A) receptor function. Systemic administration of adenosine A(2A) antagonists reverses the effects of D(2) antagonists on tasks that assess effort related choice. The present experiments were conducted to determine if nucleus accumbens is a brain locus at which adenosine A(2A) and DA D(2) antagonists interact to regulate effort-related choice behavior. A concurrent fixed ratio 5 (FR5)/chow feeding procedure was used; with this procedure, rats can choose between completing an FR5 lever-pressing requirement for a preferred food (i.e., high carbohydrate operant pellets) or approaching and consuming a freely available food (i.e., standard rodent chow). Rats trained with this procedure spend most of their time pressing the lever for the preferred food, and eat very little of the concurrently available chow. Intracranial injections of the selective DA D(2) receptor antagonist eticlopride (1.0, 2.0, 4.0 microg) into nucleus accumbens core, but not a dorsal control site, suppressed FR5 lever-pressing and increased consumption of freely available chow. Either systemic or intra-accumbens injections of the adenosine A(2A) receptor antagonist MSX-3 reversed these effects of eticlopride on effort-related choice. Intra-accumbens injections of eticlopride also increased local expression of c-Fos immunoreactivity, and this effect was attenuated by co-administration of MSX-3. Adenosine and DA systems interact to regulate instrumental behavior and effort-related processes, and nucleus accumbens is an important locus for this interaction. These findings may have implications for the treatment of psychiatric symptoms such as psychomotor slowing, anergia and fatigue.


Experimental Neurology | 2008

Adenosine A2A receptor blockade prevents memory dysfunction caused by β-amyloid peptides but not by scopolamine or MK-801

Geanne M.A. Cunha; Paula M. Canas; Carolina S. Melo; Jörg Hockemeyer; Christa E. Müller; Catarina R. Oliveira; Rodrigo A. Cunha

Adenosine A2A receptor antagonists alleviate memory deficits caused by aging or by administration of beta-amyloid peptides in rodents, which is in accordance with the beneficial effects of caffeine consumption (an adenosine receptor antagonist) on memory performance in aged individuals and in preventing Alzheimers disease. We now tested if A2A receptor blockade affords a general beneficial effect in different experimental paradigms disturbing memory performance in rodents. The beta-amyloid fragment present in patients with Alzheimers disease (Abeta1-42, 2 nmol, icv) decreased spontaneous alternation in the Y-maze after 15 days (29%) to an extent similar to the decrease of memory performance caused by scopolamine (2 mg/kg, ip) or MK-801 (0.25 mg/kg, ip) after 30 min (28% and 39%, respectively). The selective A2A receptor antagonist SCH58261 (0.05 mg/kg, ip every 24 h, starting 30 min before the noxious stimuli) prevented Abeta1-42-induced amnesia, but failed to modify scopolamine- or MK-801-induced amnesia. Similar conclusions were reached when testing another A2A receptor antagonist (KW6002, 3 mg/kg, ip). These results indicate that A2A receptors do not affect general processes of memory impairment but instead play a crucial role restricted to neurodegenerative conditions involving an insidious synaptic deterioration leading to memory dysfunction.


Journal of Medicinal Chemistry | 2001

Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents.

Siavosh Mahboobi; Herwig Pongratz; Harald Hufsky; Jörg Hockemeyer; Markus Frieser; Alexei Lyssenko; D. H. Paper; Jutta Bürgermeister; Frank-D. Böhmer; Heinz-Herbert Fiebig; Angelika M. Burger; Silke Baasner; Thomas Beckers

A new class of simple synthetic antimitotic compounds based on 2-aroylindoles was discovered. (5-Methoxy-1H-2-indolyl)-phenylmethanone (1) as well as analogous 3-fluorophenyl- (36) and 3-methoxyphenyl (3) derivatives displayed high cytotoxicity of IC(50) = 20 to 75 nM against the human HeLa/KB cervical, SK-OV-3 ovarian, and U373 astrocytoma carcinoma cell lines. The inhibition of proliferation correlated with the arrest in the G2/M phase of the cell cycle. In in vitro assays with tubulin isolated from bovine brain, in general antiproliferative activity correlated with inhibition of tubulin polymerization. Thus, the antimitotic activity of 2-aroylindoles is explained by interference with the mitotic spindle apparatus and destabilization of microtubules. In contrast to colchicine, vincristine, nocodazole, or taxol, 1 did not significantly affect the GTPase activity of beta-tubulin. Interestingly, selected compounds inhibited angiogenesis in the chorioallantoic membrane (CAM) assay. In xenograft experiments, 1 was highly active after oral administration at 200 mg/kg against the human amelanocytic melanoma MEXF 989 in athymic nude mice. We conclude, that 2-aroylindoles constitute an interesting new class of antitubulin agents with the potential to be clinically developed for cancer treatment.


Journal of Neurochemistry | 2010

Caffeine and an adenosine A2A receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life

Giana P. Cognato; Paula Agostinho; Jörg Hockemeyer; Christa E. Müller; Diogo O. Souza; Rodrigo A. Cunha

Seizures early in life cause long‐term behavioral modifications, namely long‐term memory deficits in experimental animals. Since caffeine and adenosine A2A receptor (A2AR) antagonists prevent memory deficits in adult animals, we now investigated if they also prevented the long‐term memory deficits caused by a convulsive period early in life. Administration of kainate (KA, 2 mg/kg) to 7‐days‐old (P7) rats caused a single period of self‐extinguishable convulsions which lead to a poorer memory performance in the Y‐maze only when rats were older than 90 days, without modification of locomotion or anxiety‐like behavior in the elevated‐plus maze. In accordance with the relationship between synaptotoxicity and memory dysfunction, the hippocampus of these adult rats treated with kainate at P7 displayed a lower density of synaptic proteins such as SNAP‐25 and syntaxin (but not synaptophysin), as well as vesicular glutamate transporters type 1 (but not vesicular GABA transporters), with no changes in PSD‐95, NMDA receptor subunits (NR1, NR2A, NR2B) or α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate receptor subunits (GluR1, GluR2) compared with controls. Caffeine (1 g/L) or the A2AR antagonist, KW6002 (3 mg/kg) applied in the drinking water from P21 onwards, prevented these memory deficits in P90 rats treated with KA at P7, as well as the accompanying synaptotoxicity. These results show that a single convulsive episode in early life causes a delayed memory deficit in adulthood accompanied by a glutamatergic synaptotoxicity that was prevented by caffeine or adenosine A2AR antagonists.


Current Topics in Medicinal Chemistry | 2006

Recent Progress in the Development of Adenosine Receptor Ligands as Antiinflammatory Drugs

Rhalid Akkari; Joachim C. Burbiel; Jörg Hockemeyer; Christa E. Müller

Adenosine receptors belong to the family of G protein-coupled receptors. Four distinct subtypes are known, termed A(1), A(2A), A(2B) and A(3). Adenosine is an important signaling molecule which is released under inflammatory conditions. It can show antiinflammatory as well as proinflammatory activities, and the contribution of the specific adenosine receptor subtypes in various cells, tissues and organs is complex. Agonists selective for adenosine A(1) receptors show antinociceptive activity and are active in animal models of neuropathic and inflammatory pain. Adenosine A(2A) receptor agonists are potent antiinflammatory drugs. A(2A)-selective antagonists have shown antihyperalgesic activity in animal models of inflammatory pain. For A(2B)agonists as well as A(2B) antagonists antiinflammatory activity has been postulated. Selective A(2B) antagonists were shown to decrease (inflammatory) pain, and are promising candidates for the treatment of asthma. Adenosine A(3) receptor agonists appear to be proinflammatory, while there is evidence for an antiinflammatory effect of A(3) antagonists. There are some contradictory findings, and A(3) agonists are being developed for the treatment of inflammatory diseases such as arthritis. Indirect mechanisms increasing the extracellular concentration of adenosine using adenosine kinase inhibitors, adenosine deaminase inhibitors or adenosine uptake inhibitors, or increasing the potency of adenosine at the A(1) receptor subtype by allosteric modulators lead to potent antinociceptive and antiinflammatory activity. The advantage of indirectly acting drugs may be their site- and event-specific action since they are only active where adenosine has been released. In the past decade considerable progress has been made towards the identification of novel lead structures and the development of potent and selective ligands for all four adenosine receptor subtypes. A large number of patents has recently been filed and the field is finally in the process of translating many years of basic science into therapeutic application. This review article will focus on compounds published or patented within the past three years.


Parkinsonism & Related Disorders | 2008

Dopamine/adenosine interactions related to locomotion and tremor in animal models: Possible relevance to parkinsonism

John D. Salamone; Keita Ishiwari; Adrienne J. Betz; Andrew M. Farrar; Susana Mingote; Laura Font; Jörg Hockemeyer; Christa E. Müller; Mercè Correa

Adenosine A(2A) antagonists can exert antiparkinsonian effects in animal models. Recent experiments studied the ability of MSX-3 (an adenosine A(2A) antagonist) to reverse the locomotor suppression and tremor produced by dopamine antagonists in rats. MSX-3 reversed haloperidol-induced suppression of locomotion, and reduced the tremulous jaw movements induced by haloperidol, pimozide, and reserpine. Infusions of MSX-3 into the nucleus accumbens core increased locomotion in haloperidol-treated rats, but there were no effects of infusions into the accumbens shell or ventrolateral neostriatum. In contrast, MSX-3 injected into the ventrolateral neostriatum reduced pimozide-induced tremulous jaw movements. Dopamine/adenosine interactions in different striatal subregions are involved in distinct aspects of motor function.


Behavioural Brain Research | 2007

Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats

Keita Ishiwari; Lisa J. Madson; Andrew M. Farrar; Susana Mingote; John P. Valenta; Michael D. DiGianvittorio; Lauren E. Frank; Mercè Correa; Jörg Hockemeyer; Christa E. Müller; John D. Salamone

There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.


Psychopharmacology | 2011

Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists.

Patrick A. Randall; Eric J. Nunes; Simone L. Janniere; Colin M. Stopper; Andrew M. Farrar; Thomas N. Sager; Younis Baqi; Jörg Hockemeyer; Christa E. Müller; John D. Salamone

RationaleAdenosine A2A antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone.ObjectiveThe present studies were undertaken to investigate the potential for rate-dependent stimulant effects of both selective and nonselective adenosine antagonists.MethodsSix drugs were tested: two nonselective adenosine antagonists (caffeine and theophylline), two adenosine A1 antagonists (DPCPX and CPT), and two adenosine A2A antagonists (istradefylline (KW6002) and MSX-3). Two schedules of reinforcement were employed; a fixed interval 240-s (FI-240 sec) schedule was used to generate low baseline rates of responding and a fixed ratio 20 (FR20) schedule generated high rates.ResultsCaffeine and theophylline produced rate-dependent effects on lever pressing, increasing responding on the FI-240 sec schedule but decreasing responding on the FR20 schedule. The A2A antagonists MSX-3 and istradefylline increased FI-240 sec lever pressing but did not suppress FR20 lever pressing in the dose range tested. In fact, there was a tendency for istradefylline to increase FR20 responding at a moderate dose. A1 antagonists failed to increase lever pressing rate, but DPCPX decreased FR20 responding at higher doses.ConclusionsThese results suggest that adenosine A2A antagonists enhance operant response rates, but A1 antagonists do not. The involvement of adenosine A2A receptors in regulating aspects of instrumental response output and behavioral activation may have implications for the treatment of effort-related psychiatric dysfunctions, such as psychomotor slowing and anergia in depression.


Behavioural Brain Research | 2010

Interactions between adenosine and dopamine receptor antagonists with different selectivity profiles: Effects on locomotor activity

Lyndsey E. Collins; Daniel J. Galtieri; Patricia Collins; Shawnet K. Jones; Russell G. Port; Nicholas E. Paul; Jörg Hockemeyer; Christa E. Müller; John D. Salamone

Forebrain dopamine (DA) is a critical component of the brain circuitry regulating behavioral activation. Adenosine A(2A) antagonists reverse many of the behavioral effects of DA antagonists, and A(2A) receptors are co-localized with D(2) receptors on striatal medium spiny neurons. The present work was undertaken to determine if the ability of an A(2A) antagonist, a non-selective adenosine antagonist, or an A(1) antagonist to reverse the locomotor effects of DA blockade in rats differed depending upon whether D(1) or D(2) family receptors were being antagonized. The adenosine antagonists MSX-3, caffeine, DPCPX and CPT were studied for their ability to reverse the locomotor suppression induced by the D(1) antagonist SCH 39166 (ecopipam) and the D(2) antagonist eticlopride. The D(1) and D(2) antagonists suppressed locomotion in all experiments. The adenosine A(2A) receptor antagonist MSX-3 (0.5-2.0 mg/kg IP) significantly reversed the suppression of locomotion induced by eticlopride. The non-selective adenosine antagonist caffeine (5.0-20.0 mg/kg IP) also reversed the effect of eticlopride, though the effect was not as robust as that seen with MSX-3. The adenosine A(1) antagonists DPCPX (0.375-1.5 mg/kg) and CPT (3.0-12.0 mg/kg IP) were unable to reverse the locomotor impairment elicited by eticlopride. Furthermore, the attenuation of locomotion induced by the D(1) antagonist could only be reversed by the highest dose of MSX-3, but not by caffeine, DPCPX or CPT. DA and adenosine receptor antagonists interact in the regulation of locomotor activation, but the nature of this interaction appears to depend upon the receptor selectivity profiles of the specific drugs being tested.

Collaboration


Dive into the Jörg Hockemeyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Brunschweiger

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Koch

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge