Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Kreuter is active.

Publication


Featured researches published by Jörg Kreuter.


Advanced Drug Delivery Reviews | 2001

Nanoparticulate systems for brain delivery of drugs.

Jörg Kreuter

The blood--brain barrier (BBB) represents an insurmountable obstacle for a large number of drugs, including antibiotics, antineoplastic agents, and a variety of central nervous system (CNS)-active drugs, especially neuropeptides. One of the possibilities to overcome this barrier is a drug delivery to the brain using nanoparticles. Drugs that have successfully been transported into the brain using this carrier include the hexapeptide dalargin, the dipeptide kytorphin, loperamide, tubocurarine, the NMDA receptor antagonist MRZ 2/576, and doxorubicin. The nanoparticles may be especially helpful for the treatment of the disseminated and very aggressive brain tumors. Intravenously injected doxorubicin-loaded polysorbate 80-coated nanoparticles were able to lead to a 40% cure in rats with intracranially transplanted glioblastomas 101/8. The mechanism of the nanoparticle-mediated transport of the drugs across the blood-brain barrier at present is not fully elucidated. The most likely mechanism is endocytosis by the endothelial cells lining the brain blood capillaries. Nanoparticle-mediated drug transport to the brain depends on the overcoating of the particles with polysorbates, especially polysorbate 80. Overcoating with these materials seems to lead to the adsorption of apolipoprotein E from blood plasma onto the nanoparticle surface. The particles then seem to mimic low density lipoprotein (LDL) particles and could interact with the LDL receptor leading to their uptake by the endothelial cells. After this the drug may be released in these cells and diffuse into the brain interior or the particles may be transcytosed. Other processes such as tight junction modulation or P-glycoprotein (Pgp) inhibition also may occur. Moreover, these mechanisms may run in parallel or may be cooperative thus enabling a drug delivery to the brain.


Archive | 2014

Colloidal drug delivery systems

Jörg Kreuter

Ointments and creams as colloidal drug delivery systems microemulsions liposomes niosomes nanoparticles.


Journal of Drug Targeting | 2002

Apolipoprotein-mediated Transport of Nanoparticle-bound Drugs Across the Blood-Brain Barrier

Jörg Kreuter; Dmitry Shamenkov; Petrov Ve; Peter Ramge; Klaus Cychutek; Claudia Koch-Brandt; Renad N. Alyautdin

Recent studies have shown that drugs that are normally unable to cross the blood-brain barrier (BBB) following intravenous injection can be transported across this barrier by binding to poly(butyl cyanoacrylate) nanoparticles and coating with polysorbate 80. However, the mechanism of this transport so far was not known. In the present paper, the possible involvement of apolipoproteins in the transport of nanoparticle-bound drugs into the brain is investigated. Poly(butyl cyanoacrylate) nanoparticles loaded with the hexapeptide dalargin were coated with the apolipoproteins AII, B, CII, E, or J without or after precoating with polysorbate 80. In addition, loperamide-loaded nanoparticles were coated with apolipoprotein E alone or again after precoating with polysorbate 80. After intravenous injection to ICR mice the antinociceptive threshold was measured by the tail flick test. Furthermore, the antinociceptive threshold of polysorbate 80-coated dalargin-loaded nanoparticles was determined in ApoEtm1Unc and C57BL/6J mice. The results show that only dalargin or loperamide-loaded nanoparticles coated with polysorbate 80 and/or with apolipoprotein B or E were able to achieve an antinociceptive effect. This effect was significantly higher after polysorbate-precoating and apolipoprotein B or E-overcoating. With the apolipoprotein E-deficient ApoEtm1Unc mice the antinociceptive effect was considerably reduced in comparison to the C57BL/6J mice. These results suggest that apolipoproteins B and E are involved in the mediation of the transport of drugs bound to poly(butyl cyanoacrylate) nanoparticles across the BBB. Polysorbate 80-coated nanoparticles adsorb these apolipoproteins from the blood after injection and thus seem to mimic lipoprotein particles that could be taken up by the brain capillary endothelial cells via receptor-mediated endocytosis. Bound drugs then may be further transported into the brain by diffusion following release within the endothelial cells or, alternatively, by transcytosis.


European Journal of Pharmaceutics and Biopharmaceutics | 2009

Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB)

Karsten Ulbrich; Telli Hekmatara; Elisabeth Herbert; Jörg Kreuter

Human serum albumin (HSA) nanoparticles were manufactured by desolvation. Transferrin or transferrin receptor monoclonal antibodies (OX26 or R17217) were covalently coupled to the HSA nanoparticles using the NHS-PEG-MAL-5000 crosslinker. Loperamide was used as a model drug since it normally does not cross the blood-brain barrier (BBB) and was bound to the nanoparticles by adsorption. Loperamide-loaded HSA nanoparticles with covalently bound transferrin or the OX26 or R17217 antibodies induced significant anti-nociceptive effects in the tail-flick test in ICR (CD-1) mice after intravenous injection, demonstrating that transferrin or these antibodies covalently coupled to HSA nanoparticles are able to transport loperamide and possibly other drugs across the BBB. Control loperamide-loaded HSA nanoparticles with IgG2a antibodies yielded only marginal effects.


Pharmaceutical Research | 1999

Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles.

A. E. Gulyaev; Svetlana Gelperina; Igor N. Skidan; Arkady S. Antropov; Gregory Ya. Kivman; Jörg Kreuter

AbstractPurpose. To investigate the possibility of delivering of anticancer drugs into the brain using colloidal carriers (nanoparticles). Methods. Rats obtained 5 mg/kg of doxorubicin by i v. injection in form of 4 preparations : 1. a simple solution in saline, 2. a simple solution in polysorbate 80 1% in saline, 3. bound to poly (butyl cyanoacrylate) nanoparticles, and 4. bound to poly(butyl cyanoacrylate) nanoparticles overcoated with 1% polysorbate 80 (Tween® 80). After sacrifice of the animals after 10 min, 1, 2, 4, 6, and 8 hours, the doxorubicin concentrations in plasma, liver, spleen, lungs, kidneys, heart and brain were determined after extraction by HPLC. Results. No significant difference in the body distribution was observed between the two solution formulations. The two nanoparticle formulations very significantly decreased the heart concentrations. High brain concentrations of doxorubicin (>6 μg/g) were achieved with the nanoparticles overcoated with polysorbate 80 between 2 and 4 hours. The brain concentrations observed with the other three preparations were always below the detection limit (< 0.1 |μg/g). Conclusions. The present study demonstrates that the brain concentration of systemically administered doxorubicin can be enhanced over 60-fold by binding to biodegradable poly(butyl cyanoacrylate) nanoparticles, overcoated with the nonionic surfactant polysorbate 80. It is highly probable that coated particles reached the brain intact and released the drug after endocytosis by the brain blood vessel endothelial cells.


Brain Research | 1995

Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles).

Jörg Kreuter; Renad N. Alyautdin; Dimitri A. Kharkevich; Alexei A. Ivanov

Transport of the hexapeptide dalargin across the blood-brain barrier was accomplished using a nanoparticle formulation. The formulation consisted of dalargin bound to poly(butyl cyanoacrylate) nanoparticles by sorption, coated with polysorbate 80. Intravenous injection of this formulation to mice resulted in an analgesic effect. All controls, including a simple mixture of the three components (drugs, nanoparticles, and surfactant) mixed directly before i.v. injection, exhibited no effect. Analgesia was also prevented by pretreatment with naloxone. Fluorescent and electron microscopic studies indicated that the passage of the particle-bound drug occurred by phagocytic uptake of the polysorbate 80-coated nanoparticles by the brain blood vessel endothelial cells.


Pharmaceutical Research | 2003

Direct Evidence That Polysorbate-80-Coated Poly(Butylcyanoacrylate) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles

Jörg Kreuter; Peter Ramge; Petrov Ve; Stefan Hamm; Svetlana Gelperina; Britta Engelhardt; Renad N. Alyautdin; Hagen von Briesen; David J. Begley

AbstractPurpose. It has recently been suggested that the poly(butylcyanoacrylate) (PBCA) nanoparticle drug delivery system has a generalized toxic effect on the blood-brain barrier (BBB) (8) and that this effect forms the basis of an apparent enhanced drug delivery to the brain. The purpose of this study is to explore more fully the mechanism by which PBCA nanoparticles can deliver drugs to the brain. Methods. Both in vivo and in vitro methods have been applied to examine the possible toxic effects of PBCA nanoparticles and polysorbate-80 on cerebral endothelial cells. Human, bovine, and rat models have been used in this study. Results. In bovine primary cerebral endothelial cells, nontoxic levels of PBCA particles and polysorbate-80 did not increase paracellular transport of sucrose and inulin in the monolayers. Electron microscopic studies confirm cell viability. In vivo studies using the antinociceptive opioid peptide dalargin showed that both empty PBCA nanoparticles and polysorbate-80 did not allow dalargin to enter the brain in quantities sufficient to cause antinociception. Only dalargin preadsorbed to PBCA nanoparticles was able to induce an antinociceptive effect in the animals. Conclusion. At concentrations of PBCA nanoparticles and polysorbate-80 that achieve significant drug delivery to the brain, there is little in vivo or in vitro evidence to suggest that a generalized toxic effect on the BBB is the primary mechanism for drug delivery to the brain. The fact that dalargin has to be preadsorbed onto nanoparticles before it is effective in inducing antinociception suggests specific mechanisms of delivery to the CNS rather than a simple disruption of the BBB allowing a diffusional drug entry.


International Journal of Cancer | 2004

Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles.

Sebastian C.J. Steiniger; Jörg Kreuter; Alexander S. Khalansky; Igor N. Skidan; Alexey I. Bobruskin; Zoya S. Smirnova; Sergey E. Severin; Reiner Uhl; Martin Kock; Kathrin D. Geiger; Svetlana Gelperina

Glioblastomas belong to the most aggressive human cancers with short survival times. Due to the blood‐brain barrier, they are mostly inaccessible to traditional chemotherapy. We have recently shown that doxorubicin bound to polysorbate‐coated nanoparticles crossed the intact blood‐brain barrier, thus reaching therapeutic concentrations in the brain. Here, we investigated the therapeutic potential of this formulation of doxorubicin in vivo using an animal model created by implantation of 101/8 glioblastoma tumor in rat brains. Groups of 5–8 glioblastoma‐bearing rats (total n = 151) were subjected to 3 cycles of 1.5–2.5 mg/kg body weight of doxorubicin in different formulations, including doxorubicin bound to polysorbate‐coated nanoparticles. The animals were analyzed for survival (% median increase of survival time, Kaplan‐Meier). Preliminary histology including immunocytochemistry (glial fibrillary acidic protein, ezrin, proliferation and apoptosis) was also performed. Rats treated with doxorubicin bound to polysorbate‐coated nanoparticles had significantly higher survival times compared with all other groups. Over 20% of the animals in this group showed a long‐term remission. Preliminary histology confirmed lower tumor sizes and lower values for proliferation and apoptosis in this group. All groups of animals treated with polysorbate‐containing formulations also had a slight inflammatory reaction to the tumor. There was no indication of neurotoxicity. Additionally, binding to nanoparticles may reduce the systemic toxicity of doxorubicin. This study showed that therapy with doxorubicin bound to nanoparticles offers a therapeutic potential for the treatment of human glioblastoma.


Journal of Controlled Release | 2012

Transport of drugs across the blood-brain barrier by nanoparticles.

Stefanie Wohlfart; Svetlana Gelperina; Jörg Kreuter

The central nervous system is well protected by the blood-brain barrier (BBB) which maintains its homeostasis. Due to this barrier many potential drugs for the treatment of diseases of the central nervous system (CNS) cannot reach the brain in sufficient concentrations. One possibility to deliver drugs to the CNS is the employment of polymeric nanoparticles. The ability of these carriers to overcome the BBB and to produce biologic effects on the CNS was shown in a number of studies. Over the past few years, progress in understanding of the mechanism of the nanoparticle uptake into the brain was made. This mechanism appears to be receptor-mediated endocytosis in brain capillary endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants enabling the adsorption of specific plasma proteins are necessary for this receptor-mediated uptake. The delivery of drugs, which usually are not able to cross the BBB, into the brain was confirmed by the biodistribution studies and pharmacological assays in rodents. Furthermore, the presence of nanoparticles in the brain parenchyma was visualized by electron microscopy. The intravenously administered biodegradable polymeric nanoparticles loaded with doxorubicin were successfully used for the treatment of experimental glioblastoma. These data, together with the possibility to employ nanoparticles for delivery of proteins and other macromolecules across the BBB, suggest that this technology holds great promise for non-invasive therapy of the CNS diseases.


Pharmaceutical Research | 1997

Delivery of Loperamide Across the Blood-Brain Barrier with Polysorbate 80-Coated Polybutylcyanoacrylate Nanoparticles

Renad N. Alyautdin; Petrov Ve; Klaus Langer; Achim Berthold; Dimitry A. Kharkevich; Jörg Kreuter

AbstractPurpose. The possibility of using polysorbate 80-coated nanoparticles for the delivery of the water insoluble opioid agonist loperamide across the blood-brain barrier was investigated. The analgesic effect after i.v. injection of the preparations was used to indicate drug transport through this barrier. Methods. Loperamide was incorporated into PBCA nanoparticles. Drug-containing nanoparticles were coated with polysorbate 80 and injected intravenously into mice. Analgesia was then measured by the tail-flick test. Results. Intravenous injection of the particulate formulation resulted in a long and significant analgesic effect. A polysorbate 80 loperamide solution induced a much less pronounced and very short analgesia. Uncoated nanoparticles loaded with loperamide were unable to produce analgesia. Conclusions. Polysorbate 80-coated PBCA nanoparticles loaded with loperamide enabled the transport of loperamide to the brain.

Collaboration


Dive into the Jörg Kreuter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Svetlana Gelperina

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dieter Swatschek

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Sebastian Dreis

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge