Jörg Leipner
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jörg Leipner.
Plant Molecular Biology | 2004
Yvan Fracheboud; Choosak Jompuk; Jean-Marcel Ribaut; Peter Stamp; Jörg Leipner
The genetic basis of cold-tolerance was investigated by analyzing the quantitative trait loci (QTL) of an F2:3 population derived from a cross between two lines bred for contrasting cold-tolerance using chlorophyll fluorescence as a selection tool. Chlorophyll fluorescence parameters, CO2 exchange rate, leaf greenness, shoot dry matter and shoot nitrogen content were determined in plants grown under controlled conditions at 25/22 °C or 15/13 °C (day/night). The analysis revealed the presence of 18 and 19 QTLs (LOD > 3.5) significantly involved in the variation of nine target traits in plants grown at 25/22 °C and 15/13 °C, respectively. Only four QTLs were clearly identified in both temperatures regimes for the same traits, demonstrating that the genetic control of the performance of the photosynthetic apparatus differed, depending on the temperature regime. A major QTL for the cold-tolerance of photosynthesis was identified on chromosome 6. This QTL alone explained 37.4 of the phenotypic variance in the chronic photoinhibition at low temperature and was significantly involved in the expression of six other traits, including the rate of carbon fixation and shoot dry matter accumulation, indicating that the tolerance to photoinhibition is a key factor in the tolerance of maize to low growth temperature. An additional QTL on chromosomes 2 corresponded to a QTL identified previously in another population, suggesting some common genetic basis of the cold-tolerance of photosynthesis in different maize germplasms.
Plant Physiology and Biochemistry | 2009
Ha Thuy Nguyen; Jörg Leipner; Peter Stamp; Orlene Guerra-Peraza
Unfavourable environmental conditions such as cold induce the transcription of a range of genes in plants in order to acclimate to these growth conditions. To better understand the cold acclimation of maize (Zea mays L.) it is important to identify components of the cold stress response. For this purpose, cold-induced genes were analysed using the PCR-select cDNA subtraction method. We identified several novel genes isolated from maize seedling exposed for 48h to 6 degrees C. Of 18 Zea mays cold-induced genes (ZmCOI genes) characterized, the majority share similarities with proteins with known function in signal transduction and photosynthesis regulation. RT-PCR was conducted for a selected group of genes, namely ZmCOI6.1, ZmACA1, ZmDREB2A and ZmERF3, confirming the induction by low temperature. In addition, it was found that their expression was strongly induced by other abiotic stresses such as drought and high salt concentration, by stress signalling molecules such as jasmonic acid, salicylic acid and abscisic acid, and by membrane rigidification. These results suggest that this group of genes is involved in a general response to abiotic stresses.
Archive | 2009
Jörg Leipner; Peter Stamp
Maize is very sensitive to chilling especially during early autotrophic growth. Seemingly, photosynthesis is strongly affected due to the inhibition of certain enzymes of the C4 and the Calvin cycle. Cold-induced perturbations of phloem loading may have negative feedback effects on photosynthesis, too. The reduced photosynthetic activity promotes dissipative mechanisms and affects the antioxidative defense in maize leaves. Although seedlings can withstand chilling stress without visual symptoms for few days, the development under such conditions results in irreparable damages with developing chloroplasts and the leaf meristem as the first targets. However, development at suboptimal temperature enables seedlings to better withstand further stress probably due to improved dissipative and antioxidative mechanisms. The causal physiological mechanisms for a better chilling tolerance remain still largely unknown; but recently, first QTLs for chilling tolerance of maize seedlings have been identified. Together with the growing amount of information from gene expression studies this may help to finally unravel the mechanism of chilling tolerance.
Theoretical and Applied Genetics | 2008
Jörg Leipner; Choosak Jompuk; Karl-Heinz Camp; Peter Stamp; Yvan Fracheboud
Prolonged low temperature phases and short-term cold spells often occur in spring during the crucial stages of early maize (Zea mays L.) development. The effect of low temperature-induced growth retardation at the seedling stage on final yield is poorly studied. Therefore, the aim was to identify genomic regions associated with morpho-physiological traits at flowering and harvest stage and their relationship to previously identified quantitative trait loci (QTLs) for photosynthesis and morpho-physiological traits from the same plants at seedling stage. Flowering time, plant height and shoot biomass components at harvest were measured in a dent mapping population for cold tolerance studies, which was sown in the Swiss Midlands in early and late spring in two consecutive years. Early-sown plants exhibited chilling stress during seedling stage, whereas late-sown plants grew under favorable conditions. Significant QTLs, which were stable across environments, were found for plant height and for the time of flowering. The QTLs for flowering were frequently co-localized with QTLs for plant height or ear dry weight. The comparison with QTLs detected at seedling stage revealed only few common QTLs. A pleiotropic effect was found on chromosome 3 which revealed that a good photosynthetic performance of the seedling under warm conditions had a beneficial effect on plant height and partially on biomass at harvest. However, a high chilling tolerance of the seedling seemingly had an insignificant or small negative effect on the yield.
Plant Physiology and Biochemistry | 2008
A. Massacci; S.M. Nabiev; L. Pietrosanti; S.K. Nematov; T.N. Chernikova; K. Thor; Jörg Leipner
Environmental and Experimental Botany | 2004
Veerana Sinsawat; Jörg Leipner; Peter Stamp; Yvan Fracheboud
Plant Cell and Environment | 1997
Jörg Leipner; Yvan Fracheboud; Peter Stamp
Journal of Experimental Botany | 2005
Choosak Jompuk; Yvan Fracheboud; Peter Stamp; Jörg Leipner
Plant Molecular Biology | 2014
Alicja Sobkowiak; Maciej Jończyk; Emilia Jarochowska; Przemysław Biecek; Joanna Trzcinska-Danielewicz; Jörg Leipner; Jan Fronk; Paweł Sowiński
Plant Biology | 2000
Jörg Leipner; A. Basilidès; Peter Stamp; Yvan Fracheboud