Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Neddens is active.

Publication


Featured researches published by Jörg Neddens.


Cerebral Cortex | 2009

Neuregulin-1 Modulates Hippocampal Gamma Oscillations: Implications for Schizophrenia

André Fisahn; Jörg Neddens; Leqin Yan; Andres Buonanno

Alterations in gamma-frequency oscillations are implicated in psychiatric disorders, and polymorphisms in NRG-1 and ERBB4, genes encoding Neuregulin-1 (NRG-1) and one of its receptors, designated ErbB4, are associated with schizophrenia. Here we show that NRG-1 selectively increases the power of kainate-induced, but not carbachol-induced, gamma oscillations in acute hippocampal slices. NRG-1beta is more effective than NRG-1alpha, a splice variant with lower affinity for ErbB receptors, and neither isoform affects the network activity without prior induction of gamma oscillations. NRG-1beta dramatically increases gamma oscillation power in hippocampal slices from both rats (2062 +/- 496%) and mice (710 +/- 299%). These effects of NRG-1beta are blocked by PD158780, a pan-specific antagonist of ErbB receptors, and are mediated specifically via ErbB4 receptors, because mice harboring a targeted mutation of ErbB4 do not respond to NRG-1. Moreover, we demonstrate that 50% of gamma-amino butyric acidergic parvalbumin (PV)-positive interneurons, which heavily contribute to the generation of gamma oscillations, express ErbB4 receptors. Importantly, both the number of PV-immunoreactive interneurons (-31%) and the power of kainate-induced gamma oscillations (-60%) are reduced in ErbB4 knockout mice. This study provides the first plausible link between NRG-1/ErbB4 signaling and rhythmic network activity that may be altered in persons with schizophrenia.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Neuregulin-1 regulates LTP at CA1 hippocampal synapses through activation of dopamine D4 receptors

Oh Bin Kwon; Daniel Paredes; Carmen M. Gonzalez; Jörg Neddens; Luis Hernandez; Detlef Vullhorst; Andres Buonanno

Neuregulin-1 (NRG-1) is genetically linked with schizophrenia, a neurodevelopmental cognitive disorder characterized by imbalances in glutamatergic and dopaminergic function. NRG-1 regulates numerous neurodevelopmental processes and, in the adult, suppresses or reverses long-term potentiation (LTP) at hippocampal glutamatergic synapses. Here we show that NRG-1 stimulates dopamine release in the hippocampus and reverses early-phase LTP via activation of D4 dopamine receptors (D4R). NRG-1 fails to depotentiate LTP in hippocampal slices treated with the antipsychotic clozapine and other more selective D4R antagonists. Moreover, LTP is not depotentiated in D4R null mice by either NRG-1 or theta-pulse stimuli. Conversely, direct D4R activation mimics NRG-1 and reduces AMPA receptor currents and surface expression. These findings demonstrate that NRG-1 mediates its unique role in counteracting LTP via dopamine signaling and opens future directions to study new aspects of NRG function. The novel functional link between NRG-1, dopamine, and glutamate has important implications for understanding how imbalances in Neuregulin-ErbB signaling can impinge on dopaminergic and glutamatergic function, neurotransmitter pathways associated with schizophrenia.


Hippocampus | 2009

Selective populations of hippocampal interneurons express ErbB4 and their number and distribution is altered in ErbB4 knockout mice

Jörg Neddens; Andres Buonanno

Neuregulins (NRGs) are ligands of ErbB receptor tyrosine kinases. The NRG1‐ErbB4 pathway has been shown to modulate hippocampal synaptic plasticity and network oscillations in the adult rodent brain. To identify cells that mediate these effects, here we determine the expression pattern of ErbB4 in four functionally distinct classes of interneurons that represent the majority of all inhibitory neurons in the adult hippocampus. On the basis of data from nine mice and 25,000 cells, we show that ErbB4 is expressed in cells that are positive for cholecystokinin (CCK, 54%), parvalbumin (PV, 42%), or neuronal nitric oxide synthase (nNOS, 39%) in a layer‐specific and region‐specific manner, whereas cells expressing somatostatin (SOM) are rarely immunoreactive for ErbB4 (1%). We next compared the numerical density (cells/mm3) and the distribution of interneurons between ErbB4−/− mice and wildtype controls. Based on data from 25 mice and 56,000 cells, we detected reductions of PV‐positive and nNOS‐positive cells in knockouts (−24% and −27%, respectively) but only a minor reduction of CCK‐positive cells; no changes in SOM‐positive cells were observed. The overall reduction of interneurons was verified by quantification of GAD67‐immunoreactive cells (−24% in ErbB4−/− mice). The reduction of interneurons along the dorsoventral axis was more severe in intermediate and ventral portions than in the dorsal hippocampus, and regional reductions occurred in the CA1–3 regions and subiculum, whereas we found no significant changes in the dentate gyrus (DG). The expression by different populations of interneurons suggests that ErbB4 can modulate several microcircuits within the hippocampus and mediate the previously reported effects of NRG1 on network oscillations and synaptic plasticity. The selective reduction of GABAergic cells in ErbB4−/− mice is consistent with the role of NRG‐ErbB4 signaling in the generation and migration of interneurons during development, and with neuronal and behavioral functional deficits in adult ErbB4 knockouts.


Biological Psychiatry | 2011

Conserved Interneuron-Specific ErbB4 Expression in Frontal Cortex of Rodents, Monkeys, and Humans: Implications for Schizophrenia

Jörg Neddens; Kenneth N. Fish; Ludovic Tricoire; Detlef Vullhorst; Alon Shamir; Wonjae Chung; David A. Lewis; Chris J. McBain; Andres Buonanno

BACKGROUND Neuregulin-1 and ErbB4 are genetically associated with schizophrenia, and detailed knowledge of the cellular and subcellular localization of ErbB4 is important for understanding how neuregulin-1 regulates neuronal network activity and behavior. Expression of ErbB4 is restricted to interneurons in the rodent hippocampus and cortex. However, controversy remains about the cellular expression pattern in primate brain and its subcellular distribution in postsynaptic somatodendritic locations versus presynaptic terminals. METHODS ErbB4 expression was analyzed in pyramidal cells and interneurons in the frontal cortex of five species: C57BL6 mice (n = 3), ErbB4⁻/⁻ mice (n = 2), Sprague-Dawley rats (n = 3), two macaque species (n = 3 + 2), and humans (normal control subjects, n = 2). We investigated 1) messenger RNA in mice, macaques, and humans; 2) protein expression in all species using highly specific monoclonal antibodies; and 3) specificity tests of several ErbB4 antibodies on brain samples (mouse, macaque, human). RESULTS ErbB4 RNA is restricted to interneurons in the frontal cortex of mice. ErbB4 protein is undetectable in pyramidal cells of rodents, macaques, and human frontal cortex, whereas most interneurons positive for parvalbumin, calretinin, or cholecystokinin, but only a minority of calbindin-positive cells, co-express ErbB4 in macaques. Importantly, no presynaptic ErbB4 expression was detected in any species. CONCLUSIONS The interneuron-selective somatodendritic expression of ErbB4 is consistent with a primary role of neuregulin-ErbB4 signaling in the postsynaptic modulation of gamma-aminobutyric acidergic function in rodents and primates. Our data validate the use of rodents to analyze effects of abnormal ErbB4 function as a means to model endophenotypes of psychiatric disorders.


Journal of Neuroscience Research | 2001

Differential environment alters ontogeny of dopamine innervation of the orbital prefrontal cortex in gerbils

Jörg Neddens; Kai Brandenburg; Gertraud Teuchert-Noodt; Ralph R. Dawirs

In the present study, the influence of postnatal environmental conditions on the structural ontogeny of the orbital prefrontal cortex of adult gerbils (Meriones unguiculatus) was examined. The animals were bred and reared either isolated in standard laboratory cages or grouped in an object‐filled environment. At the age of postnatal day 90, dopamine fibers were stained immunocytochemically and innervation density was determined in the orbital prefrontal cortex. By comparison, restricted rearing produced a restraint of the subsequent maturation of orbital prefrontal dopamine innervation, leading to adult fiber densities that were approximately 38% below those in seminaturally reared gerbils. Results are discussed in terms of activity‐dependent postnatal maturation of the cortex and adaptive neuroplasticity with regard to previously published data concerning diminished dopamine innervation in the medial prefrontal cortex (Winterfeld et al. [1998] J. Neurosci. Res. 63:209–213, 2001.


Journal of Neural Transmission | 2004

Developmentally induced imbalance of dopaminergic fibre densities in limbic brain regions of gerbils (Meriones unguiculatus)

A Busche; D Polascheck; Jörg Lesting; Jörg Neddens; Gertraud Teuchert-Noodt

Summary.It is well established that epigenetic factors influence the maturation of neurotransmitter systems. Social isolation as well as an early intervention with methamphetamine (MA) lead to a diminished maturation of dopaminergic (DA) fibres in cortical and striatal areas in the brain of Mongolian gerbils. The aim of this study was to prove whether isolated rearing (IR) and the application of a single dose of MA on postnatal day 14 affect the maturation of DA fibres in caudal limbic areas. Therefore the DA fibre densities were quantified in the dorsolateral and ventrolateral entorhinal cortex (EC), the ventral subiculum (SUB) and in three amygdala nuclei – the basolateral (BLA), the lateral (LA) and the central (CA) nucleus. Our results showed that IR and an early MA application led to an increase of DA fibre densities in various caudal limbic areas. Whereas the BLA was affected by both IR and MA, the LA and the medial left CA were only influenced by MA in IR animals. The DA fibre surplus in the ventrolateral EC was significant in MA treated ER and IR animals in the left and right hemisphere, respectively. The SUB and the dorsolateral EC remained unaffected by both epigenetic factors. Altogether, the BLA seems to be the area which responds most sensitively to IR and MA. Previous studies in our laboratory showed a suppressive maturation of DA fibres in the prefrontal cortex (PFC) and nucleus accumbens (NAC) induced by the same set of epigenetic factors. Thus, due to the close functional connection between the PFC and limbic areas, it could be assumed that the suppressive maturation of prefrontal DA fibres implicates an enhancement of DA innervation densities in caudal limbic areas. Imbalances in the morphology and physiology of the different DA projections are suggested here to be crucial in the aetiology of schizophrenia.


Journal of Neural Transmission | 2002

An early methamphetamine challenge suppresses the maturation of dopamine fibres in the nucleus accumbens of gerbils: on the significance of rearing conditions.

Jörg Neddens; Jörg Lesting; Ralph R. Dawirs; Gertraud Teuchert-Noodt

Summary. The effect of a single early methamphetamine (MA) challenge on postnatal maturation of the nucleus accumbens (NAC) was studied. Therefore, male gerbils received a single dose of MA (50 mg/kg, i.p.) on postnatal day 14. At the age of postnatal day 90, dopamine fibres were stained immunocytochemically and innervation density was determined in several test fields along the rostrocaudal extent of both core and shell of the NAC. Since we already know that the differential environment can alter ontogeny of dopamine innervation in the prefrontal cortex of gerbils, in the present study we investigated whether probable drug effects may be influenced by rearing conditions. For that purpose, animals were bred and reared either isolated in standard laboratory cages or grouped in an object-filled environment. The results showed that a single early MA challenge significantly alters maturation of dopamine fibre innervation in both subregions of the NAC. In seminaturally reared gerbils the drug challenge caused dopamine fibre densities which were about 54% below those of saline-treated controls in both the shell and core. However, in animals from restricted rearing this MA-induced effect was more pronounced in the core (−43%) but not significant in the shell (−14%). In conclusion, an early MA challenge caused a significant restraint of adult dopamine fibre density developing in the NAC postnatally. Additionally, rearing conditions significantly interfered with drug-induced alterations in maturation of dopaminergic innervation pattern of the NAC. The present results are discussed with recent findings on MA-induced impairment of prefrontal dopamine innervation and further reactive morphogenetic effects caused by the drug. In this respect, functional interactions between the prefrontal cortex and NAC are specifically considered.


Journal of Neural Transmission | 2007

Alteration in the GABAergic network of the prefrontal cortex in a potential animal model of psychosis

Susanne Brummelte; Jörg Neddens; Gertraud Teuchert-Noodt

Summary.The GABAergic input on cortical pyramidal cells has an important influence on the firing activity of the cortex and thus in regulating the behavioural outcome. The aim of the current study was to investigate the long-term neuroplastic adaptation of the GABAergic innervation pattern after an early severe systemic impact. Therefore 40 Mongolian gerbils (Meriones unguiculatus) were either reared under impoverished (IR) or enriched rearing conditions (ER) and received a single early (+)-methamphetamine (MA) challenge (50 mg/kg i.p.) or saline on postnatal day 14. The density of perisomatic immunoreactive GABAergic terminals surrounding layers III and V pyramidal neurons was quantified as well as the overall GABAergic fibre density in layers I/II and V of the medial prefrontal cortex (mPFC) of young adult animals (90 days). We found that IR in combination with an early MA administration led to a significant decrease in GABAergic bouton densities while the overall GABAergic fibre density increased in all investigated layers. The results indicate a shift in inhibition from somatic to dendritic innervation of pyramidal neurons in this potential animal model of psychosis. We conclude that IR combined with early MA trigger changes in the postnatal maturation of the prefrontal cortical GABAergic triggers innervation, which may interfere with proper signal processing within the prefrontal neural network.


Brain Research | 2004

Postnatal maturation of cortical serotonin lateral asymmetry in gerbils is vulnerable to both environmental and pharmacological epigenetic challenges.

Jörg Neddens; Ralph R. Dawirs; Francesco Bagorda; A Busche; Sven Horstmann; Gertraud Teuchert-Noodt

Long-term effects of postnatal differential rearing conditions and/or early methamphetamine (MA) application on serotonin (5-HT) fibre density were investigated in several cortical areas of both hemispheres of gerbils. The aim of this study was twofold: (1) Is the 5-HT fibre innervation of the cerebral cortex lateralised, and (2) if so, do postnatal environmental conditions and/or an early drug challenge interfere with development of 5-HT cerebral asymmetries? For that purpose, male gerbils were reared either under semi-natural or restricted environmental and social conditions, under both conditions once (on postnatal day 14) being treated with either a single dose of MA (50 mg/kg, i.p.) or saline. On postnatal day 110, 5-HT fibres were immunohistochemically stained and innervation densities quantified in prefrontal cortex, insular cortex, frontal cortex, parietal cortex, and entorhinal cortex. It was found that (1) 5-HT innervation in the cerebral cortex was clearly lateralised; (2) direction and extent of this asymmetry were not uniformly distributed over the different areas investigated; (3) both early methamphetamine challenge and rearing condition differentially interfered with adult 5-HT cerebral asymmetry; (4) combining MA challenge with subsequent restricted rearing tended to reverse the effects of MA on 5-HT cerebral asymmetry in some of the cortical areas investigated; and (5) significant responses in 5-HT cerebral asymmetry only occurred in prefrontal and entorhinal association cortices. The present findings suggest that the ontogenesis of cortical laterality is influenced by epigenetic factors and that disturbances of the postnatal maturation of lateralised functions may be associated with certain psychopathological behaviours.


Developmental Neuroscience | 2002

Differential Influence of Rearing Conditions and Methamphetamine on Serotonin Fibre Maturation in the Dentate Gyrus of Gerbils (Meriones unguiculatus)

A Busche; Jörg Neddens; C Dinter; Ralph R. Dawirs; Gertraud Teuchert-Noodt

Environmental experience and drugs are two parameters that affect the maturation of neurotransmitter systems. The influence of impoverished rearing (IR) versus enriched rearing (ER) was compared in conjunction with postnatal methamphetamine (MA) treatment. The densities of immunostained 5-HT fibres were quantified in septal and temporal regions of the hippocampal dentate gyrus (DG) in young adult gerbils. In the IR group, 5-HT fibre densities were significantly increased in the molecular, granular and polymorphic layers of the DG in the temporal plane. After postnatal MA treatment, the 5-HT fibre density in the ER group reached a level equivalent to that of the IR group in nearly all respects. Under IR conditions, the pharmacological intervention significantly increased the maturation of fibre densities in septal layers only in the right hemisphere with no significant alterations in the left hemisphere and in temporal regions of either hemisphere. According to our previous studies on hippocampal neurogenesis, adaptations of 5-HT fibre densities partly proved to be positively correlated to cell proliferation rates for each of the specific conditions. Thus, the induced MA sensitivity, caused by pharmacological intervention at day 14, was manifested as direct interaction of 5-HT fibre maturation and cell proliferation in dependence of environmental factors. Both IR and MA together give us a better understanding of raphe-hippocampal plasticity and offer new perspectives for pharmacological studies on the 5-HT participation in mental disorders.

Collaboration


Dive into the Jörg Neddens's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andres Buonanno

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susanne Brummelte

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gunther H. Moll

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Detlef Vullhorst

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alon Shamir

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge