Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Rinklebe is active.

Publication


Featured researches published by Jörg Rinklebe.


Science of The Total Environment | 2009

Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review

G. Du Laing; Jörg Rinklebe; Bart Vandecasteele; Erik Meers; Filip Tack

This paper reviews the factors affecting trace metal behaviour in estuarine and riverine floodplain soils and sediments. Spatial occurrence of processes affecting metal mobility and availability in floodplains are largely determined by the topography. At the oxic-anoxic interface and in the anoxic layers of floodplain soils, especially redox-sensitive processes occur, which mainly result in the inclusion of metals in precipitates or the dissolution of metal-containing precipitates. Kinetics of these processes are of great importance for these soils as the location of the oxic-anoxic interface is subject to change due to fluctuating water table levels. Other important processes and factors affecting metal mobility in floodplain soils are adsorption/desorption processes, salinity, the presence of organic matter, sulphur and carbonates, pH and plant growth. Many authors report highly significant correlations between cation exchange capacity, clay or organic matter contents and metal contents in floodplain soils. Iron and manganese (hydr)oxides were found to be the main carriers for Cd, Zn and Ni under oxic conditions, whereas the organic fraction was most important for Cu. The mobility and availability of metals in a floodplain soil can be significantly reduced by the formation of metal sulphide precipitates under anoxic conditions. Ascending salinity in the flood water promotes metal desorption from the floodplain soil in the absence of sulphides, hence increases total metal concentrations in the water column. The net effect of the presence of organic matter can either be a decrease or an increase in metal mobility, whereas the presence of carbonates in calcareous floodplain soils or sediments constitutes an effective buffer against a pH decrease. Moreover, carbonates may also directly precipitate metals. Plants can affect the metal mobility in floodplain soils by oxidising their rhizosphere, taking up metals, excreting exudates and stimulating the activity of microbial symbionts in the rhizosphere.


Advances in Colloid and Interface Science | 2013

A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties.

Sabry M. Shaheen; Christos Tsadilas; Jörg Rinklebe

Knowledge about the behavior and reactions of separate soil components with trace elements (TEs) and their distribution coefficients (Kds) in soils is a key issue in assessing the mobility and retention of TEs. Thus, the fate of TEs and the toxic risk they pose depend crucially on their Kd in soil. This article reviews the Kd of TEs in soils as affected by the sorption system, element characteristics, and soil colloidal properties. The sorption mechanism, determining factors, favorable conditions, and competitive ions on the sorption and Kd of TEs are also discussed here. This review demonstrates that the Kd value of TEs does not only depend on inorganic and organic soil constituents, but also on the nature and characteristics of the elements involved as well as on their competition for sorption sites. The Kd value of TEs is mainly affected by individual or competitive sorption systems. Generally, the sorption in competitive systems is lower than in mono-metal sorption systems. More strongly sorbed elements, such as Pb and Cu, are less affected by competition than mobile elements, such as Cd, Ni, and Zn. The sorption preference exhibited by soils for elements over others may be due to: (i) the hydrolysis constant, (ii) the atomic weight, (iii) the ionic radius, and subsequently the hydrated radius, and (iv) its Misono softness value. Moreover, element concentrations in the test solution mainly affect the Kd values. Mostly, values of Kd decrease as the concentration of the included cation increases in the test solution. Additionally, the Kd of TEs is controlled by the sorption characteristics of soils, such as pH, clay minerals, soil organic matter, Fe and Mn oxides, and calcium carbonate. However, more research is required to verify the practical utilization of studying Kd of TEs in soils as a reliable indicator for assessing the remediation process of toxic metals in soils and waters.


Chemosphere | 2016

Amendment of biochar reduces the release of toxic elements under dynamic redox conditions in a contaminated floodplain soil

Jörg Rinklebe; Sabry M. Shaheen; Tina Frohne

Biochar (BC) can be used to remediate soils contaminated with potential toxic elements (PTEs). However, the efficiency of BC to immobilize PTEs in highly contaminated floodplain soils under dynamic redox conditions has not been studied up to date. Thus, we have (i) quantified the impact of pre-definite redox conditions on the release dynamics of dissolved aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) in a highly contaminated soil (CS) (non-treated) and in the same soil treated with 10 g kg(-1) biochar based material (CS+BC), and (ii) assessed the efficacy of the material to reduce the concentrations of PTEs in soil solution under dynamic redox conditions using an automated biogeochemical microcosm apparatus. The impact of redox potential (EH), pH, dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), iron (Fe), manganese (Mn), and sulfate (SO4(2-)) on dynamics of PTEs was also determined. The EH was lowered to +68 mV and afterwards increased stepwise to +535 mV. Significant negative correlation between EH and pH in CS and CS+BC was detected. The systematic increase of EH along with decrease of pH favors the mobilization of PTEs in CS and CS+BC. The material addition seems to have little effect on redox processes because pattern of EH/pH and release dynamics of PTEs was basically similar in CS and CS+BC. However, concentrations of dissolved PTEs were considerably lower in CS+BC than in CS which demonstrates that BC is able to decrease concentrations of dissolved PTEs even under dynamic redox conditions.


Soil and Sediment Contamination: An International Journal | 2014

Contamination of Floodplain Soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the Impact of Pre-definite Redox Variations on the Mobility of These Elements

Tina Frohne; Jörg Rinklebe; Roland A. Diaz-Bone

This study demonstrates that floodplain soils of the River Wupper, Germany, are seriously contaminated with metal(loid)s. We used an automated biogeochemical microcosm system allowing controlled variation of redox potential (EH) to assess the impact of pre-definite redox conditions on the dynamics of arsenic (As), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), antimony (Sb), and zinc (Zn) in homogenized soil material taken from an acid floodplain soil. The concentrations of Co, Cu, Mn, Ni, Sb, and Zn in soil solution were low at low EH, possibly due to the precipitation of metal sulfides, and increased with rising EH, presumably caused by their association with dissolved organic carbon (DOC). A significant positive correlation between metal/DOC-ratio and EH indicated that the binding of the metals to DOC shifted from stronger to weaker when EH rose. Decreasing As concentrations with increasing EH in soil solution indicated co-precipitation with Fe(hydr)oxides and/or oxidation of more soluble As(III) to less soluble As(V) during oxidation. The other studied elements seemed not to co-precipitate with newly formed Fe(hydr)oxides when EH rose, possibly due to the prevailing low pH. In the future, the specific role of DOC and sulfur chemistry on metal(loid) dynamics should be elucidated more fully, and similar studies should be conducted with additional frequently flooded soils worldwide to verify these results.


Environmental Pollution | 2014

Temporal dynamics of pore water concentrations of Cd, Co, Cu, Ni, and Zn and their controlling factors in a contaminated floodplain soil assessed by undisturbed groundwater lysimeters

Sabry M. Shaheen; Jörg Rinklebe; Holger Rupp; Ralph Meissner

We aimed to assess the dynamics of pore water concentrations of Cd, Co, Cu, Ni, Zn and their controlling factors (EH, pH, DOC, Fe, Mn, and SO4(2-)) in a contaminated floodplain soil under different flood-dry-cycles. Two parallel undisturbed groundwater lysimeters (mean values presented) were used for long term (LT; 94 days) and short term (ST; 21 days) flood-dry-cycles. Reducing conditions under LT lead to low EH and pH, while DOC, Co, Fe, Mn, and Ni increased. Cadmium, Cu, Zn, and SO4(2-) increased under oxidizing conditions during ST. Cobalt and Ni revealed a similar behavior which seem to governed by EH/pH, Mn, Fe, and DOC. Cadmium, Cu, and Zn reveal a similar fate; their dynamics were affected by EH/pH, DOC, and SO4(2-). Our findings suggest that a release of Cd, Cu, Co, Fe, Mn, Ni, and Zn under different flood-dry-cycles can assumed what might create potential environmental risks in using metal-enriched floodplain soils.


Environmental Pollution | 2010

Dynamics of mercury fluxes and their controlling factors in large Hg-polluted floodplain areas.

Jörg Rinklebe; Anja During; Mark Overesch; Gijs Du Laing; Rainer Wennrich; Hans-Joachim Stärk; Sibylle Mothes

Environmental pollution by mercury (Hg) is a considerable environmental problem world-wide. Due to the occurrence of Hg volatilization from their soils, floodplains can function as an important source of volatile Hg. Soil temperature and soil water content related to flood dynamics are considered as important factors affecting seasonal dynamics of total gaseous mercury (TGM) fluxes. We quantified seasonal variations of TGM fluxes and conducted a laboratory microcosm experiment to assess the effect of temperature and moisture on TGM fluxes in heavily polluted floodplain soils. Observed TGM emissions ranged from 10 to 850 ng m(-2) h(-1) and extremely exceeded the emissions of non-polluted sites. TGM emissions increased exponentially with raised air and soil temperatures in both field (R(2): 0.49-0.70) and laboratory (R(2): 0.99) experiments. Wet soil material showed higher TGM fluxes, whereas the role of soil water content was affected by sampling time during the microcosm experiments.


Science of The Total Environment | 2009

Heavy metal mobility in intertidal sediments of the Scheldt estuary : Field monitoring

Gijs Du Laing; Erik Meers; Marjan Dewispelaere; Bart Vandecasteele; Jörg Rinklebe; Filip Tack; Marc Verloo

The current paper aims to check whether the factors affecting metal mobility in intertidal sediments and floodplain soils of the river Scheldt, as identified under controlled greenhouse conditions in previous studies, also play a similar role under variable field conditions. Moreover, we aimed to assess the importance of these factors as a function of sampling time and depth, with respect to the natural variations in water table levels. This field monitoring revealed that the mobility of metals in intertidal sediments of the Scheldt estuary indeed are affected by factors which were identified to affect the metal fate in the upper sediment layer in previous greenhouse experiments. However, the effects were often less pronounced under field conditions. This can be attributed to the lower sampling resolution, the occurrence of interactions between factors, the disturbance of microbial communities during setup of greenhouse experiments and the more moderate environmental conditions in the field, affecting microbial and enzymatic activities. At most of the sampled wetlands, the level of the water table fluctuated only slightly during fall, winter and spring, whereas it decreased substantially during summer, especially at the sites with more sandy sediments. The highest sulphide concentrations were found at the sites where the water table level never decreased considerably. These sulphides primarily suppress the availability of Cd, Cu, Ni and Zn. Organic complexation resulted in the mobilisation of Cu, Ni and Cr. The concentrations of Cd, Ni and Zn in the pore water were affected by Fe/Mn oxide reduction, whereas Cd and Zn concentrations appeared to be also affected by the salinity.


Ecotoxicology and Environmental Safety | 2017

Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination

Tahir Abbas; Muhammad Rizwan; Shafaqat Ali; Muhammad Zia-ur-Rehman; Muhammad Farooq Qayyum; Farhat Abbas; Fakhir Hannan; Jörg Rinklebe; Yong Sik Ok

Cadmium (Cd) is a well-known and widespread toxic heavy metal while the effects of biochar (BC) on Cd bioavailability and toxicity in wheat, especially in soils with aged contamination are largely unknown. In the present study, the effect of rice straw BC on Cd immobilization in soil and uptake by wheat in an agricultural contaminated-soil was investigated. Different levels of rice straw BC (0%, 1.5%, 3.0% and 5% w/w) were incorporated into the soil and incubated for two weeks. After this, wheat plants were grown in the amended soil until maturity. The results show that the BC treatments increased the soil and soil solution pH and silicon contents in the plant tissues and in the soil solution while decreased the bioavailable Cd in soil. The BC application increased the plant-height, spike-length, shoot and root dry mass and grain yield in a dose additive manner when compared with control treatment. As compared to control, BC application increased the photosynthetic pigments and gas exchange parameters in leaves. Biochar treatments decreased the oxidative stress while increased the activities of antioxidant enzymes in shoots compared to the control. The BC treatments decreased the Cd and Ni while increased Zn and Mn concentrations in shoots, roots, and grains of wheat compared to the control. As compared to the control, Cd concentration in wheat grains decreased by 26%, 42%, and 57% after the application of 1.5%, 3.0%, and 5.0% BC respectively. Overall, the application of rice straw BC might be effective in immobilization of metal in the soil and reducing its uptake and translocation to grains.


Wetlands | 2009

Lipid Biomarkers for Assessment of Microbial Communities in Floodplain Soils of the Elbe River (Germany)

Uwe Langer; Jörg Rinklebe

Two long-term submerged Eutric Gleysols (GLe) and two short-term flooded Eutric Fluvisols (FLe) with high organic carbon contents (Corg between 5.1 and 12.9%) were selected to characterize soil microbial communities at the Elbe River (Germany). Measurements included dehydrogenase activity (DHA), soil microbial carbon (Cmic), soil basal respiration (BR), metabolic quotient (qCO2), Cmic/Corg ratio, and phospholipid fatty acids (PLFA). PLFA biomass, DHA, and Cmic/Corg ratios were considerable lower in GLe’s than in FLe’s. Whereas the BR as well as qCO2 were higher in GLe’s what seems to be an unspecific response of aerobic soil microorganisms to the long flooding period and the resulting short time for development following flooding. Cmic/Corg ratios were low in comparison to terrestrial soils. PLFA profiles were dominated by saturated fatty acids (FA). Principal component analyses (PCA) of FAs revealed clear differences among the four floodplain soils. In GLe’s all fractions of PLFAs were lower than in FLe’s. Polyunsaturated FA biomarkers (18:2ω6,9c) were 10 times lower in GLe’s. Our results indicate that the environmental conditions in which microorganisms are exposed (i.e., long term soil inundation and anoxia) seem to be disadvantageous for fungi.


Chemosphere | 2016

Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils.

Sabry M. Shaheen; Jörg Rinklebe; Tina Frohne; John R. White; Ronald D. DeLaune

The impact of redox potential (EH), pH, iron (Fe), manganese (Mn), chloride (Cl(-)), aliphatic and aromatic dissolved organic carbon (DOC), and sulfate ( [Formula: see text] ) on the release of dissolved arsenic (As), cadmium (Cd), cobalt (Co), and vanadium (V) were studied in Louisiana freshwater marsh Wax Lake Delta soil (Mississippi River) using an automated biogeochemical microcosm apparatus. The experiment was conducted from reducing (-60 mV) to stepwise oxidizing (+491 mV) conditions. The initial pH was 7.4 and decreased under reducing conditions to 4.9, and remained constant during the increase of EH. Concentrations of As (1.3-120.5 μg L(-1)), V (0.9-48.6 μg L(-1)), Fe, DOC, and the specific UV absorbance increased under reducing conditions and decreased with rising EH. Release of As and V appeared to be related to changes of EH/pH, co-precipitation with Fe oxides, and the release of dissolved aromatic carbon compounds. Concentrations of soluble Cd (4.8-11.2 μg L(-1)), Mn, [Formula: see text] , and Cl(-) increased under oxidizing conditions. Release of Co (166.6-258.2 μg L(-1)) was related to the chemistry of Fe, Mn and DOC. Phospholipid fatty acids analysis indicated the potential for the microbial community to be involved in biogeochemical processes such as the formation of sulfides, oxidation and reduction of compounds, and the bio-methylation of elements such as As. Overall, we measured a release of As and V under anoxic conditions, while oxic conditions favored the release of Cd. These results outline concern on the potential risk of mobilization of toxic elements in temporary waterlogged soils for agricultural purposes in deltaic ecosystems.

Collaboration


Dive into the Jörg Rinklebe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel C.W. Tsang

Hong Kong Polytechnic University

View shared research outputs
Top Co-Authors

Avatar

Tina Frohne

University of Wuppertal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jayanta Kumar Biswas

Kalyani Government Engineering College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans-Joachim Stärk

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Researchain Logo
Decentralizing Knowledge