Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Schmiedmayer is active.

Publication


Featured researches published by Jörg Schmiedmayer.


Reviews of Modern Physics | 2009

Optics and interferometry with atoms and molecules

Alexander D. Cronin; Jörg Schmiedmayer; David E. Pritchard

Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review we first describe the basic tools for coherent atom optics including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on AtomChips. Then we review scientific advances in a broad range of fields that have resulted from the application of atom interferometers. These are grouped in three categories: (1) fundamental quantum science, (2) precision metrology and (3) atomic and molecular physics. Although some experiments with Bose Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e. phenomena where each single atom interferes with itself.


Advances in Atomic Molecular and Optical Physics | 2002

Microscopic Atom Optics: From Wires to an Atom Chip

Ron Folman; Peter Krüger; Jörg Schmiedmayer; Johannes Hecker Denschlag; Carsten Henkel

We give a comprehensive overview of the development of micro traps, from the first experiments on guiding atoms using current carrying wires in the early 1990s to the creation of a BEC on an atom chip.


Physical Review Letters | 2000

Controlling cold atoms using nanofabricated surfaces: atom chips

R. Folman; Donatella Cassettari; Björn Hessmo; Thomas Maier; Jörg Schmiedmayer

Atoms can be trapped and guided using nanofabricated wires on surfaces, achieving the scales required by quantum information proposals. These atom chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems.


Nature | 2007

Non-equilibrium coherence dynamics in one-dimensional Bose gases.

Sebastian Hofferberth; Igor Lesanovsky; B. Fischer; Thorsten Schumm; Jörg Schmiedmayer

Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.


Science | 2015

Experimental Observation of a Generalized Gibbs Ensemble

Tim Langen; Sebastian Erne; Remi Geiger; Bernhard Rauer; Thomas Schweigler; Maximilian Kuhnert; Wolfgang Rohringer; Igor E. Mazets; Thomas Gasenzer; Jörg Schmiedmayer

Detecting multiple temperatures Most people have an intuitive understanding of temperature. In the context of statistical mechanics, the higher the temperature, the more a system is removed from its lowest energy state. Things become more complicated in a nonequilibrium system governed by quantum mechanics and constrained by several conserved quantities. Langen et al. showed that as many as 10 temperature-like parameters are necessary to describe the steady state of a one-dimensional gas of Rb atoms that was split into two in a particular way (see the Perspective by Spielman). Science, this issue p. 207; see also p. 185 Interferometry suggests that as many as 10 parameters are needed to describe the steady state of an integrable system. [Also see Perspective by Spielman] The description of the non-equilibrium dynamics of isolated quantum many-body systems within the framework of statistical mechanics is a fundamental open question. Conventional thermodynamical ensembles fail to describe the large class of systems that exhibit nontrivial conserved quantities, and generalized ensembles have been predicted to maximize entropy in these systems. We show experimentally that a degenerate one-dimensional Bose gas relaxes to a state that can be described by such a generalized ensemble. This is verified through a detailed study of correlation functions up to 10th order. The applicability of the generalized ensemble description for isolated quantum many-body systems points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution.


Physical Review Letters | 2000

Beam splitter for guided atoms

Donatella Cassettari; Björn Hessmo; Ron Folman; Thomas Maier; Jörg Schmiedmayer

We have designed and experimentally studied a simple beam splitter for atoms guided on an Atom Chip, using a current carrying Y-shaped wire and a bias magnetic field. This beam splitter and other similar designs can be used to build atom optical elements on the mesoscopic scale, and integrate them in matterwave quantum circuits. PACS numbers: 03.75.Be, 03.65.Nk Typeset using REVTEX


Proceedings of the National Academy of Sciences of the United States of America | 2015

Quantum technologies with hybrid systems

Gershon Kurizki; Patrice Bertet; Yuimaru Kubo; Klaus Mølmer; David Petrosyan; Peter Rabl; Jörg Schmiedmayer

An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.


Physical Review Letters | 2009

Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity.

J. Verdú; Hashem Zoubi; Ch. Koller; Johannes Majer; Helmut Ritsch; Jörg Schmiedmayer

Placing an ensemble of 10;{6} ultracold atoms in the near field of a superconducting coplanar waveguide resonator with a quality factor Q approximately 10;{6}, one can achieve strong coupling between a single microwave photon in the coplanar waveguide resonator and a collective hyperfine qubit state in the ensemble with g_{eff}/2pi approximately 40 kHz larger than the cavity linewidth of kappa/2pi approximately 7 kHz. Integrated on an atomchip, such a system constitutes a hybrid quantum device, which also can be used to interconnect solid-state and atomic qubits, study and control atomic motion via the microwave field, observe microwave superradiance, build an integrated micromaser, or even cool the resonator field via the atoms.


Nature Physics | 2009

A millisecond quantum memory for scalable quantum networks

Bo Zhao; Yu-Ao Chen; Xiao-Hui Bao; Thorsten Strassel; Chih-Sung Chuu; Xian-Min Jin; Jörg Schmiedmayer; Zhen-Sheng Yuan; Shuai Chen; Jian-Wei Pan

calculation shows that the expected lifetime is of the order of seconds in this case. Here we report on our investigation of prolonging the storage time of the quantum memory for single excitations. In the experiment, we find that using only the ‘clock state’ is not sufficient toobtain theexpected longstorage time.We furtheranalyse, isolate and identify the distinct decoherence mechanisms, and thoroughly investigate the dephasing of the spin wave (SW) by varying its wavelength. We find that the dephasing of the SW is extremely sensitive to the angle between the write beam and detection mode, especiallyforsmallangles.Onthebasisofthisfinding,byexploiting the ‘clock state’ and increasing the wavelength of the SW to suppress the dephasing, we succeed in extending the storage time from 10s


Nature Physics | 2008

Probing quantum and thermal noise in an interacting many-body system

Sebastian Hofferberth; Igor Lesanovsky; Thorsten Schumm; Adilet Imambekov; Vladimir Gritsev; Eugene Demler; Jörg Schmiedmayer

The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum-mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis of the shot-to-shot variations of interference-fringe contrast for pairs of independently created one-dimensional Bose condensates. Analysing different system sizes, we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from poissonian to Gumbel type, in excellent agreement with theoretical predictions on the basis of the Luttinger-liquid formalism. We present the first experimental observation of quasi-long-range order in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system. The analysis of the interference fringes generated by initially independent one-dimensional Bose condensates reveals contributions of both quantum noise and thermal noise, advancing our fundamental understanding of quantum states in interacting many-body systems.

Collaboration


Dive into the Jörg Schmiedmayer's collaboration.

Top Co-Authors

Avatar

Thorsten Schumm

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes Majer

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Igor E. Mazets

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Trupke

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anton Zeilinger

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William J. Munro

National Institute of Informatics

View shared research outputs
Top Co-Authors

Avatar

Tim Langen

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge