Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Striessnig is active.

Publication


Featured researches published by Jörg Striessnig.


Cell | 2000

Congenital Deafness and Sinoatrial Node Dysfunction in Mice Lacking Class D L-Type Ca2+ Channels

Josef Platzer; Jutta Engel; Anneliese Schrott-Fischer; Kurt Stephan; Sergio Bova; Howard Y. Chen; Hui Zheng; Jörg Striessnig

Voltage-gated L-type Ca2+ channels (LTCCs) containing a pore-forming alpha1D subunit (D-LTCCs) are expressed in neurons and neuroendocrine cells. Their relative contribution to total L-type Ca2+ currents and their physiological role and significance as a drug target remain unknown. Therefore, we generated D-LTCC deficient mice (alpha1D-/-) that were viable with no major disturbances of glucose metabolism. alpha1D-/-mice were deaf due to the complete absence of L-type currents in cochlear inner hair cells and degeneration of outer and inner hair cells. In wild-type controls, D-LTCC-mediated currents showed low activation thresholds and slow inactivation kinetics. Electrocardiogram recordings revealed sinoatrial node dysfunction (bradycardia and arrhythmia) in alpha1D-/- mice. We conclude that alpha1D can form LTCCs with negative activation thresholds essential for normal auditory function and control of cardiac pacemaker activity.


Nature Reviews Neuroscience | 2003

Neurobiology of migraine

Daniela Pietrobon; Jörg Striessnig

Migraine — an episodic headache — affects more than 10% of the general population. Despite recent progress, drug therapy for preventing and treating migraine remains unsatisfactory for many patients. One problem that slows the development of new therapeutic approaches is our limited understanding of migraine neurobiology. Activation of the trigeminovascular system is a central step in the development of migraine. However, two main issues remain incompletely understood: the primary cause of migraine, leading to activation of the trigeminovascular system, and the mechanisms of pain generation after its activation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity

Matteo E. Mangoni; Brigitte Couette; Emmanuel Bourinet; Josef Platzer; Daniel Reimer; Jörg Striessnig; Joël Nargeot

The spontaneous activity of pacemaker cells in the sino-atrial node (SAN) controls the heart rhythm and rate under physiological conditions. Pacemaker activity in SAN cells is due to the presence of the diastolic depolarization, a slow depolarization phase that drives the membrane voltage from the end of an action potential to the threshold of a new action potential. SAN cells express a wide array of ionic channels, but we have limited knowledge about their functional role in pacemaker activity and we still do not know which channels play a prominent role in the generation of the diastolic depolarization. It is thus important to provide genetic evidence linking the activity of genes coding for ionic channels to specific alterations of pacemaker activity of SAN cells. Here, we show that target inactivation of the gene coding for α1D (Cav1.3) Ca2+ channels in the mouse not only significantly slows pacemaker activity but also promotes spontaneous arrhythmia in SAN pacemaker cells. These alterations of pacemaker activity are linked to abolition of the major component of the L-type current (ICa,L) activating at negative voltages. Pharmacological analysis of ICa,L demonstrates that Cav1.3 gene inactivation specifically abolishes ICa,L in the voltage range corresponding to the diastolic depolarization. Taken together, our data demonstrate that Cav1.3 channels play a major role in the generation of cardiac pacemaker activity by contributing to diastolic depolarization in SAN pacemaker cells.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Pharmacological disruption of calcium channel trafficking by the α2δ ligand gabapentin

Jan Hendrich; Alexandra Tran Van Minh; Fay Heblich; Manuela Nieto-Rostro; Katrin Watschinger; Jörg Striessnig; Jack Wratten; Anthony Davies; Annette C. Dolphin

The mechanism of action of the antiepileptic and antinociceptive drugs of the gabapentinoid family has remained poorly understood. Gabapentin (GBP) binds to an exofacial epitope of the α2δ-1 and α2δ-2 auxiliary subunits of voltage-gated calcium channels, but acute inhibition of calcium currents by GBP is either very minor or absent. We formulated the hypothesis that GBP impairs the ability of α2δ subunits to enhance voltage-gated Ca2+channel plasma membrane density by means of an effect on trafficking. Our results conclusively demonstrate that GBP inhibits calcium currents, mimicking a lack of α2δ only when applied chronically, but not acutely, both in heterologous expression systems and in dorsal root-ganglion neurons. GBP acts primarily at an intracellular location, requiring uptake, because the effect of chronically applied GBP is blocked by an inhibitor of the system-L neutral amino acid transporters and enhanced by coexpression of a transporter. However, it is mediated by α2δ subunits, being prevented by mutations in either α2δ-1 or α2δ-2 that abolish GBP binding, and is not observed for α2δ-3, which does not bind GBP. Furthermore, the trafficking of α2δ-2 and CaV2 channels is disrupted both by GBP and by the mutation in α2δ-2, which prevents GBP binding, and we find that GBP reduces cell-surface expression of α2δ-2 and CaV2.1 subunits. Our evidence indicates that GBP may act chronically by displacing an endogenous ligand that is normally a positive modulator of α2δ subunit function, thereby impairing the trafficking function of the α2δ subunits to which it binds.


Biophysical Journal | 2001

Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells

Sebastian Barg; Xiaosong Ma; Lena Eliasson; Juris Galvanovskis; Sven Göpel; Stefanie Obermüller; Josef Platzer; Erik Renström; Michel Trus; Daphne Atlas; Jörg Striessnig; Patrik Rorsman

The association of L-type Ca(2+) channels to the secretory granules and its functional significance to secretion was investigated in mouse pancreatic B cells. Nonstationary fluctuation analysis showed that the B cell is equipped with <500 alpha1(C) L-type Ca(2+) channels, corresponding to a Ca(2+) channel density of 0.9 channels per microm(2). Analysis of the kinetics of exocytosis during voltage-clamp depolarizations revealed an early component that reached a peak rate of 1.1 pFs(-1) (approximately 650 granules/s) 25 ms after onset of the pulse and is completed within approximately 100 ms. This component represents a subset of approximately 60 granules situated in the immediate vicinity of the L-type Ca(2+) channels, corresponding to approximately 10% of the readily releasable pool of granules. Experiments involving photorelease of caged Ca(2+) revealed that the rate of exocytosis was half-maximal at a cytoplasmic Ca(2+) concentration of 17 microM, and concentrations >25 microM are required to attain the rate of exocytosis observed during voltage-clamp depolarizations. The rapid component of exocytosis was not affected by inclusion of millimolar concentrations of the Ca(2+) buffer EGTA but abolished by addition of exogenous L(C753-893), the 140 amino acids of the cytoplasmic loop connecting the 2(nd) and 3(rd) transmembrane region of the alpha1(C) L-type Ca(2+) channel, which has been proposed to tether the Ca(2+) channels to the secretory granules. In keeping with the idea that secretion is determined by Ca(2+) influx through individual Ca(2+) channels, exocytosis triggered by brief (15 ms) depolarizations was enhanced 2.5-fold by the Ca(2+) channel agonist BayK8644 and 3.5-fold by elevating extracellular Ca(2+) from 2.6 to 10 mM. Recordings of single Ca(2+) channel activity revealed that patches predominantly contained no channels or many active channels. We propose that several Ca(2+) channels associate with a single granule thus forming a functional unit. This arrangement is important in a cell with few Ca(2+) channels as it ensures maximum usage of the Ca(2+) entering the cell while minimizing the influence of stochastic variations of the Ca(2+) channel activity.


Journal of Biological Chemistry | 1998

Familial Hemiplegic Migraine Mutations Change α1ACa2+ Channel Kinetics

Richard L. Kraus; Martina J. Sinnegger; Hartmut Glossmann; Steffen Hering; Jörg Striessnig

Missense mutations in the pore-forming human α1A subunit of neuronal P/Q-type Ca2+channels are associated with familial hemiplegic migraine (FHM). The pathophysiological consequences of these mutations are unknown. We have introduced the four single mutations reported for the human α1A subunit into the conserved rabbit α1A(R192Q, T666M, V714A, and I1819L) and investigated possible changes in channel function after functional expression of mutant subunits inXenopus laevis oocytes. Changes in channel gating were observed for mutants T666M, V714A, and I1819L but not for R192Q. Ba2+ current (I Ba) inactivation was slightly faster in mutants T666M and V714A than in wild type. The time course of recovery from channel inactivation was slower than in wild type in T666M and accelerated in V714A and I1819L. As a consequence, accumulation of channel inactivation during a train of 1-Hz pulses was more pronounced for mutant T666M and less pronounced for V714A and I1819A. Our data demonstrate that three of the four FHM mutations, located at the putative channel pore, alter inactivation gating and provide a pathophysiological basis for the postulated neuronal instability in patients with FHM.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain

Catrin S. Müller; Alexander Haupt; Wolfgang Bildl; Jens Schindler; Hans-Günther Knaus; Marcel Meissner; Burkhard Rammner; Jörg Striessnig; Veit Flockerzi; Bernd Fakler; Uwe Schulte

Local Ca2+ signaling occurring within nanometers of voltage-gated Ca2+ (Cav) channels is crucial for CNS function, yet the molecular composition of Cav channel nano-environments is largely unresolved. Here, we used a proteomic strategy combining knockout-controlled multiepitope affinity purifications with high-resolution quantitative MS for comprehensive analysis of the molecular nano-environments of the Cav2 channel family in the whole rodent brain. The analysis shows that Cav2 channels, composed of pore-forming α1 and auxiliary β subunits, are embedded into protein networks that may be assembled from a pool of ∼200 proteins with distinct abundance, stability of assembly, and preference for the three Cav2 subtypes. The majority of these proteins have not previously been linked to Cav channels; about two-thirds are dedicated to the control of intracellular Ca2+ concentration, including G protein-coupled receptor-mediated signaling, to activity-dependent cytoskeleton remodeling or Ca2+-dependent effector systems that comprise a high portion of the priming and release machinery of synaptic vesicles. The identified protein networks reflect the cellular processes that can be initiated by Cav2 channel activity and define the molecular framework for organization and operation of local Ca2+ signaling by Cav2 channels in the brain.


Cellular Physiology and Biochemistry | 1999

Pharmacology, Structure and Function of Cardiac L-Type Ca 2+ Channels

Jörg Striessnig

Voltage-gated L-type Ca2+ channels control depolarization-induced Ca2+ entry in different electrically excitable cells, including mammalian heart. Important molecular and functional details providing new insight into L-type channel structure and modulation are reviewed in this article. This includes the identification of amino acid residues responsible for drug binding, the role of accessory subunits and alternative splicing for fine-tuning channel activity and modulation by protein kinases (A, C, tyrosine kinases), cGMP-dependent pathways, calmodulin and Ca2+. Alterations in Ca2+ channel activity under pathological conditions such as in heart failure or during ischemia could provide new clues for the development of drugs to treat cardiovascular diseases.


Journal of Clinical Investigation | 2004

Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels.

Martina J. Sinnegger-Brauns; Alfred Hetzenauer; Irene G. Huber; Erik Renström; Georg Wietzorrek; Stanislav Berjukov; Maurizio Cavalli; Doris Walter; Alexandra Koschak; Ralph Waldschütz; Steffen Hering; Sergio Bova; Patrik Rorsman; Olaf Pongs; Nicolas Singewald; Jörg Striessnig

Ca(v)1.2 and Ca(v)1.3 L-type Ca(2+) channels (LTCCs) are believed to underlie Ca(2+) currents in brain, pancreatic beta cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause cardiovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Ca(v)1.2 alpha 1 subunits (Ca(v)1.2DHP-/-) without affecting function and expression. This allowed separation of the DHP effects of Ca(v)1.2 from those of Ca(v)1.3 and other LTCCs. DHP effects on pancreatic beta cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Ca(v)1.2DHP-/- mice, which rules out a direct role of Ca(v)1.3 for these physiological processes. Using Ca(v)1.2DHP-/- mice, we established DHPs as mood-modifying agents: LTCC activator-induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Ca(v)1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.


Nature Neuroscience | 2011

Loss of Ca v 1.3 ( CACNA1D ) function in a human channelopathy with bradycardia and congenital deafness

Shahid Mahmood Baig; Alexandra Koschak; Andreas Lieb; Mathias Gebhart; Claudia Dafinger; Gudrun Nürnberg; Amjad Ali; Ilyas Ahmad; Martina J. Sinnegger-Brauns; Niels Brandt; Jutta Engel; Matteo E. Mangoni; Muhammad Farooq; Habib U. Khan; Peter Nürnberg; Jörg Striessnig; Hanno J. Bolz

Deafness is genetically very heterogeneous and forms part of several syndromes. So far, delayed rectifier potassium channels have been linked to human deafness associated with prolongation of the QT interval on electrocardiograms and ventricular arrhythmia in Jervell and Lange-Nielsen syndrome. Cav1.3 voltage-gated L-type calcium channels (LTCCs) translate sound-induced depolarization into neurotransmitter release in auditory hair cells and control diastolic depolarization in the mouse sinoatrial node (SAN). Human deafness has not previously been linked to defects in LTCCs. We used positional cloning to identify a mutation in CACNA1D, which encodes the pore-forming α1 subunit of Cav1.3 LTCCs, in two consanguineous families with deafness. All deaf subjects showed pronounced SAN dysfunction at rest. The insertion of a glycine residue in a highly conserved, alternatively spliced region near the channel pore resulted in nonconducting calcium channels that had abnormal voltage-dependent gating. We describe a human channelopathy (termed SANDD syndrome, sinoatrial node dysfunction and deafness) with a cardiac and auditory phenotype that closely resembles that of Cacna1d−/− mice.

Collaboration


Dive into the Jörg Striessnig's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manfred Grabner

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge