Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorg Thöming is active.

Publication


Featured researches published by Jorg Thöming.


Marine Drugs | 2010

Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

Jolanta Kumirska; Małgorzata Czerwicka; Zbigniew Kaczyński; Anna Bychowska; Krzysztof Brzozowski; Jorg Thöming; Piotr Stepnowski

Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.


Green Chemistry | 2005

Progress in evaluation of risk potential of ionic liquids—basis for an eco-design of sustainable products

Bernd Jastorff; Kerstin Mölter; Peter Behrend; Ulrike Bottin-Weber; Juliane Filser; Anna Heimers; Bernd Ondruschka; Johannes Ranke; Maike Schaefer; Heike Schröder; Annegret Stark; Piotr Stepnowski; Frauke Stock; Reinhold Störmann; Stefan Stolte; Urs Welz-Biermann; Susanne Ziegert; Jorg Thöming

Motivated by the prevailing need for a sustainable development and taking the principles of Green Chemistry as a starting point, the present paper describes new and updated findings regarding a sustainable product design for ionic liquids. The focus is on environmental risk. Nevertheless, cytotoxicity testing and first indicative results from a genotoxicity study extend present knowledge also with regard to possible effects on humans. The structural variability of commercially available ionic liquids as well as the abundance of theoretically accessible ionic liquids is illustrated and the consequences for an integrated risk assessment accompanying the development process are discussed. The side chain effect on toxicity for imidazolium type ionic liquids was confounded by more complex biological testing. Also, an influence of an anion on cytotoxicity is shown for the first time. Testing of presumed metabolites of the imidazolium type cations showed a significantly lower biological activity in cytotoxicity studies than their parent compounds. The importance of a purity assessment for ionic liquids is pointed out and a collection of methods that is believed to be adequate is presented. In addition to risk analysis, the use of life cycle analysis for the multi-objective problem of designing ionic liquids is sketched and an eco-design scheme for ionic liquids is proposed. In conclusion, the paper illustrates the complex nature of the development processes ionic liquids are currently undergoing and provides guidance on which aspects have to be kept in mind.


Journal of Colloid and Interface Science | 2009

Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions

Justyna Łuczak; Christian Jungnickel; Monika Joskowska; Jorg Thöming; Jan Hupka

The structural similarity between some ionic liquids (ILs) and ionic surfactants, indicates that ILs are expected to exhibit surface adsorption and aggregation properties. The Krafft temperature and the temperature dependence of the critical micelle concentration (CMC) were determined for four imidazolium ionic liquids with varying chain length by measuring concentration dependence of electrical conductivity at different temperatures. The magnitude of the thermodynamic parameters of the micelle formation provide valuable information about the driving force of micellization of these compounds, therefore, the parameters of these chemicals were estimated from the degree of ionization, and the CMC. The thermodynamic parameters were correlated to directly measured values using isothermal titration calorimetry (ITC). It was found that the long-chained imidazolium ILs show similar thermodynamic characteristics as traditional cationic surfactants, whereas the Krafft temperature was shown to be lower than that of traditional cationic surfactants of similar chain length.


Chemosphere | 2012

Ionic liquids as lubricants or lubrication additives: An ecotoxicity and biodegradability assessment

Stefan Stolte; Stephanie Steudte; Olatz Areitioaurtena; Francesco Pagano; Jorg Thöming; Piotr Stepnowski; Amaya Igartua

This paper reports on the (eco)toxicity and biodegradability of ionic liquids considered for application as lubricants or lubrication additives. Ammonium- and pyrrolidinium-based cations combined with methylsulphate, methylsulphonate and/or (CF(3)SO(2))(2)N(-) anions were investigated in tests to determine their aquatic toxicity using water fleas Daphnia magna, green algae Selenastrum capricornutum and marine bacteria (Vibrio fischeri). Additional test systems with an isolated enzyme (acetylcholinesterase) and isolated leukaemia cells from rats (IPC-81) were used to assess the biological activity of the ionic liquids. These compounds generally exhibit low acute toxicity and biological activity. Their biodegradability was screened according to OECD test procedures 301 B and 301 F. For choline and methoxy-choline ionic liquids ready biodegradability was observed within 5 or 10 d, respectively. Some of the compounds selected have a considerable potential to contribute to the development of more sustainable products and processes.


Green Chemistry | 2014

Biodegradability of 27 pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium ionic liquid cations under aerobic conditions

Jennifer Neumann; Stephanie Steudte; Chul-Woong Cho; Jorg Thöming; Stefan Stolte

The chemical and thermal stability of ionic liquids (ILs) makes them interesting for a large variety of applications in nearly all areas of the chemical industry. However, this stability is often reflected in their recalcitrance towards biodegradation, which comes with the risk of persistence when they are released into the environment. In this study we carried out a systematic investigation of the biodegradability of pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium-based IL cations substituted with different alkyl or functionalised side chains and using halide counterions. We examined their primary degradability by specific analysis and/or their ultimate biodegradability using biochemical oxygen demand tests according to OECD guideline 301F. Biological transformation products were investigated using mass spectrometry. A comparison of the biodegradation potential of these ILs shows that for all five head groups, representatives can be found that are readily or inherently biodegradable, thus permitting the structural design of ILs with a reduced environmental hazard.


Green Chemistry | 2007

Synthesis of ionic liquids in micro-reactors—a process intensification study

Daniel A. Waterkamp; Michael Heiland; Michael Schlüter; Janelle C.M. Sauvageau; Tom Beyersdorff; Jorg Thöming

To date the manufacturing of ionic liquids on a large scale is limited by ineffective batch procedures employed for the alkylation step. Here we present a way to intensify the synthesis of 1-butyl-3-methylimidazolium bromide ([BMIM]Br) by using a continuously operating micro-reactor system. It consists of a microstructured mixer of 450 µm channel width and reaction tubes with inner diameter ranging from 2 to 6 mm allowing a production rate of 9.3 kg [BMIM]Br per day. In this reactor system the strongly exothermic alkylation can be thermally controlled even at elevated temperatures leading to high reaction rates in a solvent-free modus. Inspite of temperatures up to 85 °C the product purity achieved was above 99%. The degree of process intensification achieved results in a more than twentyfold increase of the space–time–yield compared to a conventional batch process. The measured conversion data could be modelled successfully using a second order reaction kinetic. With the generated kinetic parameters the time course of temperature and conversion was also simulated for batch synthesis. Based on these data the performance of the continuous micro-reactor and the conventional batch process was compared. The simulation shows the potential of process intensification as an improvement of space–time–yield in the range of two orders of magnitude.


Energy and Environmental Science | 2015

Environmental and health impact assessment of Liquid Organic Hydrogen Carrier (LOHC) systems – challenges and preliminary results

Ya-Qi Zhang; Andreas Bösmann; Nicole Brückner; Jorg Thöming; Peter Wasserscheid; Stefan Stolte

Liquid Organic Hydrogen Carrier (LOHC) systems offer a very attractive way to store and transport hydrogen, a technical feature that is highly desirable to link unsteady energy production from renewables with the vision of a sustainable, CO2-free, hydrogen-based energy system. LOHCs can be charged and discharged with considerable amounts of hydrogen in cyclic, catalytic hydrogenation and dehydrogenation processes. As their physico-chemical properties are very similar to diesel, todays infrastructure for liquid fuels can be used for their handling thus greatly facilitating the step-wise transition from todays fossil system to a CO2 emission free energy supply for both, stationary and mobile applications. However, for a broader application of these liquids it is mandatory to study in addition to their technical performance also their potential impact on the environment and human health. This paper presents the first account on the toxicological profile of some potential LOHC structures. Moreover, it documents the importance of an early integration of hazard assessment in technology development and reveals for the specific case of LOHC structures the need for additional research in order to overcome some challenges in the hazard assessment for these liquids.


Chemosphere | 2013

Changes in zeta potential of imidazolium ionic liquids modified minerals - Implications for determining mechanism of adsorption

Wojciech Mrozik; Kurosch Rezwan; Jorg Thöming; Jan Hupka; Christian Jungnickel

As the amount of industrial processes involving ionic liquids (ILs) increase the question of their environmental fate awaits an answer. Should ILs become a source of pollution they will primarily be found in soils and water. Interaction of imidazolium IL with soils is a complex interplay of many parameters making predicting their fate and mobility a challenging task. In order to shed more light on the mechanism of adsorption in soils we examined the interactions of imidazolium ILs with the major component of soils, namely mineral fraction. Within this work adsorption on kaolinite and quartz was investigated in terms of adsorption isotherms, partition coefficients and changes of zeta potentials of clays modified by ILs aggregates. The zeta potential was found to be dependent on the alkyl chain length of the imidazolium homologues. It can therefore be concluded that although adsorption seems to rely on electrostatic attraction, at least in the initial stage, the hydrophobicity of molecules is just as significant.


Journal of Physical Chemistry B | 2011

Ionic liquids: predictions of physicochemical properties with experimental and/or DFT-calculated LFER parameters to understand molecular interactions in solution.

Chul-Woong Cho; Ulrich Preiss; Christian Jungnickel; Stefan Stolte; Jürgen Arning; Johannes Ranke; Andreas Klamt; Ingo Krossing; Jorg Thöming

In this article, we present evolutionary models to predict the octanol-water partition coefficients (log P), water solubilities, and critical micelle concentrations (CMCs) of ionic liquids (ILs), as well as the anionic activity coefficients and hydrophobicities in pure water and octanol-water. They are based on a polyparameter linear free energy relationship (LFER) using measured and/or DFT-calculated LFER parameters: hydrogen-bonding acidity (A), hydrogen-bonding basicity (B), polarizability/dipolarity (S), excess molar refraction (E), and McGowan volume (V) of IL ions. With both calculated or experimental LFER descriptors of IL ions, the physicochemical parameters were predicted with an errors of 0.182-0.217 for the octanol-water partition coefficient and 0.131-0.166 logarithmic units for the water solubility. Because experimentally determined solute parameters of anions are not currently available, the CMC, anionic activity coefficient, and hydrophobicity were predicted with quantum-chemical methods with R(2) values of at least 0.99, as well as errors below 0.168 logarithmic units. These new approaches will facilitate the assessment of the technical applicability and environmental fate of ionic compounds even before their synthesis.


Science of The Total Environment | 2015

Influences of use activities and waste management on environmental releases of engineered nanomaterials.

Henning Wigger; Stephan Hackmann; Till Zimmermann; Jan Köser; Jorg Thöming; Arnim von Gleich

Engineered nanomaterials (ENM) offer enhanced or new functionalities and properties that are used in various products. This also entails potential environmental risks in terms of hazard and exposure. However, hazard and exposure assessment for ENM still suffer from insufficient knowledge particularly for product-related releases and environmental fate and behavior. This study therefore analyzes the multiple impacts of the product use, the properties of the matrix material, and the related waste management system (WMS) on the predicted environmental concentration (PEC) by applying nine prospective life cycle release scenarios based on reasonable assumptions. The products studied here are clothing textiles treated with silver nanoparticles (AgNPs), since they constitute a controversial application. Surprisingly, the results show counter-intuitive increases by a factor of 2.6 in PEC values for the air compartment in minimal AgNP release scenarios. Also, air releases can shift from washing to wearing activity; their associated release points may shift accordingly, potentially altering release hot spots. Additionally, at end-of-life, the fraction of AgNP-residues contained on exported textiles can be increased by 350% when assuming short product lifespans and globalized WMS. It becomes evident that certain combinations of use activities, matrix material characteristics, and WMS can influence the regional PEC by several orders of magnitude. Thus, in the light of the findings and expected ENM market potential, future assessments should consider these aspects to derive precautionary design alternatives and to enable prospective global and regional risk assessments.

Collaboration


Dive into the Jorg Thöming's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Du

University of Bremen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chul-Woong Cho

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge