Jorge Barrios-Payán
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jorge Barrios-Payán.
Medical Oncology | 2014
Alejandro Francisco-Cruz; M. Aguilar-Santelises; Octavio Ramos-Espinosa; Dulce Mata-Espinosa; Brenda Marquina-Castillo; Jorge Barrios-Payán; Rogelio Hernández-Pando
Abstract Granulocyte–macrophage colony-stimulating factor (GM-CSF) is often used to treat leucopenia. Other haematopoietins may increase the number of circulating leucocytes with higher efficiency, but GM-CSF has additional effects that may be far more relevant than its haematopoietic activity. GM-CSF induces differentiation, proliferation and activation of macrophages and dendritic cells which are necessary for the subsequent T helper cell type 1 and cytotoxic T lymphocyte activation. GM-CSF haematopoietic and non-haematopoietic functions have pro-inflammatory and immune regulatory potential to treat a variety of autoimmune diseases and tumours. On the other hand, GM-CSF deficiency leads to various immune dysfunctions and the current utilization of GM-CSF as haematopoietic factor might be an accurate but very incomplete indication for a cytokine with vast clinical potential.
Helicobacter | 2006
Milena Saqui-Salces; Brenda L. Rocha-Gutiérrez; Jorge Barrios-Payán; Guillermo Ruiz-Palacios; Ignacio Camacho-Arroyo; Armando Gamboa-Domínguez
Background: Gender differences have been shown regarding the changes in the inflammatory response, gastrin secretion, and gastric acidity during Helicobacter pylori infection.
Clinical Science | 2015
Luciana Balboa; Jorge Barrios-Payán; Érika González-Domínguez; Claire Lastrucci; Geanncarlo Lugo-Villarino; Dulce Mata-Espinoza; Pablo Schierloh; Denise Kviatcovsky; Olivier Neyrolles; Isabelle Maridonneau-Parini; Carmen Sánchez-Torres; María C. Sasiain; Rogelio Hernández-Pando
Circulating monocytes (Mo) play an essential role in the host immune response to chronic infections. We previously demonstrated that CD16(pos) Mo were expanded in TB (tuberculosis) patients, correlated with disease severity and were refractory to dendritic cell differentiation. In the present study, we investigated whether human Mo subsets (CD16(neg) and CD16(pos)) differed in their ability to influence the early inflammatory response against Mycobacterium tuberculosis. We first evaluated the capacity of the Mo subsets to migrate and engage a microbicidal response in vitro. Accordingly, CD16(neg) Mo were more prone to migrate in response to different mycobacteria-derived gradients, were more resistant to M. tuberculosis intracellular growth and produced higher reactive oxygen species than their CD16(pos) counterpart. To assess further the functional dichotomy among the human Mo subsets, we carried out an in vivo analysis by adapting a hybrid mouse model (SCID/Beige, where SCID is severe combined immunodeficient) to transfer each Mo subset, track their migratory fate during M. tuberculosis infection, and determine their impact on the host immune response. In M. tuberculosis-infected mice, the adoptively transferred CD16(neg) Mo displayed a higher lung migration index, induced a stronger pulmonary infiltration of murine leucocytes expressing pro- and anti-inflammatory cytokines, and significantly decreased the bacterial burden, in comparison with CD16(pos) Mo. Collectively, our results indicate that human Mo subsets display divergent biological roles in the context of M. tuberculosis infection, a scenario in which CD16(neg) Mo may contribute to the anti-mycobacterial immune response, whereas CD16(pos) Mo might promote microbial resilience, shedding light on a key aspect of the physiopathology of TB disease.
Fems Immunology and Medical Microbiology | 2016
Octavio Ramos-Espinosa; Sujhey Hernández-Bazán; Alejandro Francisco-Cruz; Dulce Mata-Espinosa; Jorge Barrios-Payán; Brenda Marquina-Castillo; Fernando López-Casillas; Marta Carretero; Marcela Del Rio; Rogelio Hernández-Pando
Mycobacterium tuberculosis (Mtb) latent infection can lead to reactivation. The design of new strategies to prevent it is an important subject. B6D2F1 mice were infected intratracheally with a low dose of Mtb H37Rv to induce chronic infection. After 7 months, mice were treated with one dose of recombinant adenoviruses encoding TNFα, β defensin-3 and LL37. Immunosupression was induced 1 month later with corticosterone. In comparison with the control group, mice treated with adenoviruses showed significantly less bacterial load and pneumonia, the adenoviruses encoding TNFα and LL37 being the most efficient. Gene therapy based in a proinflammatory cytokine or antimicrobial peptides is a potentially useful system to prevent reactivation of latent tuberculosis.
Vaccine | 2016
Cesar Pedroza-Roldan; Carolina Guapillo; Jorge Barrios-Payán; Dulce Mata-Espinosa; Michel de Jesús Aceves-Sánchez; Brenda Marquina-Castillo; Rogelio Hernández-Pando; Mario Alberto Flores-Valdez
Mycobacterium tuberculosis (Mtb) has been a threat to humans since ancient times, and it is the main causative agent of tuberculosis (TB). Until today, the only licensed vaccine against Mtb is the live attenuated M. bovis Bacillus Calmette-Guérin (BCG), which has variable levels of protection against the pulmonary form of infection. The quest for a new vaccine is a priority given the rise of multidrug-resistant Mtb around the world, as well as the tremendous burden imposed by latent TB. The objective of this study was to evaluate the immunogenicity and capacity of protection of a modified BCG strain (BCGΔBCG1419c) lacking the c-di-GMP phosphodiesterase gene BCG1419c, in diverse mice models. In a previous report, we have shown that BCGΔBCG1419c was capable of increasing biofilm production and after intravenous infection of immunocompetent mice; this strain persisted longer in lungs than parental BCG Pasteur. This led us to hypothesize that BCGΔBCG1419c might therefore possess some advantage as vaccine candidate. Our results in this report indicate that compared to conventional BCG, vaccination with BCGΔBCG1419c induced a better activation of specific T-lymphocytes population, was equally effective in preventing weight loss despite being used at lower dose, reduced tissue damage (pneumonic scores), increased local IFNγ(+) T cells, and diminished bacterial burden in lungs of BALB/c mice infected intratracheally with high dose Mtb H37Rv to induce progressive TB. Moreover, vaccination with BCGΔBCG1419c improved resistance to reactivation after immunosuppression induced by corticosterone in a murine model of chronic infection similar to latent TB. Furthermore, despite showing increased persistence in immunocompetent mice, BCGΔBCG1419c was as attenuated as parental BCG in nude mice. To our knowledge, this is the first demonstration that a modified BCG vaccine candidate with increased pellicle/biofilm production has the capacity to protect against Mtb challenge in chronic and reactivation models of infection.
Salud Publica De Mexico | 2010
Jorge Barrios-Payán; Mauricio Castañón-Arreola; Mario Alberto Flores-Valdez; Rogelio Hernández-Pando
Mycobacterium tuberculosis, the causal agent of tuberculosis, has affected humankind for approximately 20,000 years. Tuberculosis is a devastating disease, particularly in developing countries. One of its most notable characteristics is latent infection, in which live bacilli persist in the host tissues without clinical manifestations. Thus, the tuberculous bacilli adapt their metabolism to remain viable with low or no replication, avoiding their elimination by the immune system or conventional chemotherapy. Among the several problems that are particularly important to the understanding of this form of tuberculosis, and are not well-known, are the key metabolic steps that allow mycobacteria to remain in a dormant state and its interaction with host immunity. This article reviews some of the most significant biological, clinical and epidemiological aspects of this form of tuberculosis.
Fems Immunology and Medical Microbiology | 2017
Nesty Olivares; Yadira Rodriguez; Zyanya Lucía Zatarain-Barrón; Brenda Marquina; Dulce Mata-Espinosa; Jorge Barrios-Payán; Cristina Parada; Bárbara Moguel; Clara Espitia-Pinzón; Iris Estrada; Rogelio Hernández-Pando
The recommended chemotherapy for drug-sensitive tuberculosis (TB) consists of four different antibiotics administrated for 6 months. This long treatment leads to significant compliance problems and consequently to recrudescence of the disease and to the development of multidrug-resistant (MDR) strains. Thus, new alternatives are needed to shorten or simplify the treatment of TB. Antibodies have therapeutic effects in animal models of TB, so their use as adjuvants in drug-sensitive and MDR TB is an interesting alternative. To assess the effect of antibodies, BALB/c mice with active late disease 60 days after infection with drug-sensitive TB strain H37Rv were treated with intravenous immunoglobulin (IVIg), alone or in combination with conventional chemotherapy. When compared with control non-treated animals, IVIg alone produced a significantly decreased burden of pulmonary bacilli. This decrease was even greater when IVIg was used in combination with conventional chemotherapy. The combined therapy also significantly reduced tissue damage (pneumonia) when compared to infected animals treated only with antibiotics. IVIg treatment also caused decreased bacillary burdens in mice infected with an MDR strain. In vitro experiments suggested that improving phagocytosis by efficient opsonization is perhaps the principal mechanism of this beneficial therapeutic effect.
Vaccine | 2018
Cristian Alfredo Segura-Cerda; Michel de Jesús Aceves-Sánchez; Brenda Marquina-Castillo; Dulce Mata-Espinoza; Jorge Barrios-Payán; Perla Jazmín Vega-Domínguez; César Pedroza-Roldán; Jorge Bravo-Madrigal; Alba Adriana Vallejo-Cardona; Rogelio Hernández-Pando; Mario Alberto Flores-Valdez
Pellicles, a type of biofilm, have gathered a renewed interest in the field of tuberculosis as a structure that mimics some characteristics occurring during M. tuberculosis infection, such as antibiotic recalcitrance and chronicity of infection, and as a source of antigens for humoral response in infected guinea pigs. In other bacteria, it has been well documented that the second messenger c-di-GMP modulates the transition from planktonic cells to biofilm formation. In this work, we used the live vaccine Mycobacterium bovis BCG to determine whether deletion of genes involved in c-di-GMP metabolism would affect interaction with macrophages, capacity to induce immune response in a murine cell line and mice, and how the protein profile was modified when grown as surface pellicles. We found that deletion of the BCG1419c (Delta c-di-GMP phosphodiesterase, ΔPDE) gene, or deletion of the BCG1416c (Delta c-di-GMP diguanylate cyclase, ΔDGC) gene, altered production of TNF-α, IL-6, and IL-1β, in murine macrophages, and resulted in attenuation in intra-macrophage replication. Moreover, in addition to the improved immunogenicity of the BCGΔBCG1419c mutant already reported, deletion of the BCG1416c gene leads to increased T CD4+ and T CD8+ activation. This correlated with protection versus lethality in mice infected with the highly virulent M. tuberculosis 5186 afforded by vaccination with all the tested BCG strains, and controlled the growth of the mildly virulent M. tuberculosis H37Rv in lungs by vaccination with BCGΔBCG1419c during chronic late infection from 4 to 6 months after challenge. Furthermore, when grown as surface pellicles, a condition used to manufacture BCG vaccine, in comparison to BCG wild type, both rBCGs changed expression of antigenic proteins such as DnaK, HbhA, PstS2, 35KDa antigen, GroEL2, as well as AcpM, a protein involved in synthesis of mycolic acids, molecules relevant to modulate inflammatory responses.
PLOS Neglected Tropical Diseases | 2017
Pamela Cribb; Virginia Perdomo; Victoria Lucia Alonso; Romina Manarin; Jorge Barrios-Payán; Brenda Marquina-Castillo; Luis Tavernelli; Rogelio Hernández-Pando; Walderez O. Dutra
Background High Mobility Group B (HMGB) proteins are nuclear architectural factors involved in chromatin remodeling and important nuclear events. HMGBs also play key roles outside the cell acting as alarmins or Damage-associated Molecular Patterns (DAMPs). In response to a danger signal these proteins act as immune mediators in the extracellular milieu. Moreover, these molecules play a central role in the pathogenesis of many autoimmune and both infectious and sterile inflammatory chronic diseases. Principal findings We have previously identified a High mobility group B protein from Trypanosoma cruzi (TcHMGB) and showed that it has architectural properties interacting with DNA like HMGBs from other eukaryotes. Here we show that TcHMGB can be translocated to the cytoplasm and secreted out of the parasite, a process that seems to be stimulated by acetylation. We report that recombinant TcHMGB is able to induce an inflammatory response in vitro and in vivo, evidenced by the production of Nitric Oxide and induction of inflammatory cytokines like TNF-α, IL-1β and IFN-γ gene expression. Also, TGF-β and IL-10, which are not inflammatory cytokines but do play key roles in Chagas disease, were induced by rTcHMGB. Conclusions These preliminary results suggest that TcHMGB can act as an exogenous immune mediator that may be important for both the control of parasite replication as the pathogenesis of Chagas disease and can be envisioned as a pathogen associated molecular pattern (PAMP) partially overlapping in function with the host DAMPs.
Pulmonary Pharmacology & Therapeutics | 2015
Dulce Mata-Espinosa; Gloria María Molina-Salinas; Jorge Barrios-Payán; Gabriel Navarrete-Vázquez; Brenda Marquina; Octavio Ramos-Espinosa; Estela Isabel Bini; Isabel Baeza; Rogelio Hernández-Pando
BACKGROUND AND OBJECTIVES Tuberculosis (TB) is one of the deadliest infectious diseases and comprises a global public health concern because co-infection with Human immunodeficiency virus (HIV) and, in particular, the continuous isolation of new Multidrug-resistant strains (MDR), rendering the discovery of novel anti-TB agents a strategic priority. One of the most effective first-line mycobactericidal drugs is Isoniazid (INH). Previously, we reported in vitro anti-mycobacterial activity against sensitive and MDR Mycobacterium tuberculosis strains of a new oxadiazole obtained from the hybridization of INH and palmitic acid. The present study evaluated the therapeutic potential of liposomes including Phosphatidylcholine (PC) and L-α Phosphatidic acid (PA) or PC and Cholesterol (Chol) containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in BALB/c male mice infected by intratracheal (i.t.) route with drug-sensitive or MDR M. tuberculosis. METHODS The lipophilic 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine was obtained to mix INH and palmitoyl chloride. The in vivo anti-TB effect of this oxadiazole derivative contained in two different liposomes was tested in BALB/c mice infected with a sensitive strain of M. tuberculosis, initiating treatment 2 months post-infection, by i.t. route, of 50 μg of oxadiazole derivative for 1 month. In a second stage, mice were infected with an MDR (resistant to first-line drugs) and treated with 150 μg of an oxadiazole derivative carried by PC + Chol liposomes for 2 months. The effect of the oxadiazole derivative in vivo was determined by the quantification of lung bacilli loads and histopathology. RESULTS In comparison with control animals, drug-sensitive, strain-infected mice treated for 1 month with 50 μg of this oxadiazole derivative contained in the liposomes of PC + Chol showed a significant, 80% decrease of live bacilli in lungs, which correlated with the morphometric observation, and the group of MDR clinical isolate-infected mice treated with 150 μg of the oxadiazole derivative contained in the same type of liposome showed significantly lower lung bacillary loads than control mice, producing 90% of bacilli burden reduction after 2 months of treatment. CONCLUSION These results confirm and extend the reported highly efficient anti-mycobacterial activity of this lipophilic oxidazole derivative when it is carried by liposomes in mice suffering from late progressive pulmonary TB induced by drug-sensitive, and most prominently by, MDR strains.