Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge Barriuso is active.

Publication


Featured researches published by Jorge Barriuso.


BMC Bioinformatics | 2011

Estimation of bacterial diversity using next generation sequencing of 16S rDNA: a comparison of different workflows.

Jorge Barriuso; José R. Valverde; Rafael P. Mellado

BackgroundNext generation sequencing (NGS) enables a more comprehensive analysis of bacterial diversity from complex environmental samples. NGS data can be analysed using a variety of workflows. We test several simple and complex workflows, including frequently used as well as recently published tools, and report on their respective accuracy and efficiency under various conditions covering different sequence lengths, number of sequences and real world experimental data from rhizobacterial populations of glyphosate-tolerant maize treated or untreated with two different herbicides representative of differential diversity studies.ResultsAlignment and distance calculations affect OTU estimations, and multiple sequence alignment exerts a major impact on the computational time needed. Generally speaking, most of the analyses produced consistent results that may be used to assess differential diversity changes, however, dataset characteristics dictate which workflow should be preferred in each case.ConclusionsWhen estimating bacterial diversity, ESPRIT as well as the web-based workflow, RDP pyrosequencing pipeline, produced good results in all circumstances, however, its computational requirements can make method-combination workflows more attractive, depending on sequence variability, number and length.


Environmental Microbiology | 2010

Effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities: a comparison with pre-emergency applied herbicide consisting of a combination of acetochlor and terbuthylazine.

Jorge Barriuso; Silvia Marín; Rafael P. Mellado

A comparison was made of the effect of glyphosate (RoundupPlus), a post-emergency applied herbicide, and of HarnessGTZ, a pre-emergency applied herbicide, on the rhizobacterial communities of genetically modified NK603 glyphosate-tolerant maize. The potential effect was monitored by direct amplification, cloning and sequencing of soil DNA encoding 16S rRNA, rhizobacterial DNA hybridization to commercially available genome-wide microarrays from the soil bacterium Streptomyces coelicolor, and high-throughput DNA pyrosequencing of the bacterial DNA coding for 16S rRNA hypervariable V6 region. The results obtained strongly suggest that both herbicides do in fact affect the maize rhizobacterial communities, glyphosate being, to a great extent, the environmentally less aggressive herbicide.


PLOS ONE | 2012

Effect of Cry1Ab Protein on Rhizobacterial Communities of Bt-Maize over a Four-Year Cultivation Period

Jorge Barriuso; José R. Valverde; Rafael P. Mellado

Background Bt-maize is a transgenic variety of maize expressing the Cry toxin from Bacillus turingiensis. The potential accumulation of the relative effect of the transgenic modification and the cry toxin on the rhizobacterial communities of Bt-maize has been monitored over a period of four years. Methodology/Principal Findings The accumulative effects of the cultivation of this transgenic plant have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The obtained sequences were subjected to taxonomic, phylogenetic and taxonomic-independent diversity studies. The results obtained were consistent, indicating that variations detected in the rhizobacterial community structure were possibly due to climatic factors rather than to the presence of the Bt-gene. No variations were observed in the diversity estimates between non-Bt and Bt-maize. Conclusions/Significance The cultivation of Bt-maize during the four-year period did not change the maize rhizobacterial communities when compared to those of the non-Bt maize. This is the first study to be conducted with Bt-maize during such a long cultivation period and the first evaluation of rhizobacterial communities to be performed in this transgenic plant using Next Generation Sequencing.


PLOS ONE | 2011

Potential Accumulative Effect of the Herbicide Glyphosate on Glyphosate-Tolerant Maize Rhizobacterial Communities over a Three-Year Cultivation Period

Jorge Barriuso; Silvia Marín; Rafael P. Mellado

Background Glyphosate is a herbicide that is liable to be used in the extensive cultivation of glyphosate-tolerant cultivars. The potential accumulation of the relative effect of glyphosate on the rhizobacterial communities of glyphosate-tolerant maize has been monitored over a period of three years. Methodology/Principal Findings The composition of rhizobacterial communities is known to vary with soil texture, hence, the analyses have been performed in two agricultural fields with a different soil texture. The accumulative effects of glyphosate have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The relative composition of the rhizobacterial communities does vary in each field over the three-year period. The overall distribution of the bacterial phyla seems to change from one year to the next similarly in the untreated and glyphosate-treated soils in both fields. The two methods used to estimate bacterial diversity offered consistent results and are equally suitable for diversity assessment. Conclusions/Significance The glyphosate treatment during the three-year period of seasonal cultivation in two different fields did not seem to significantly change the maize rhizobacterial communities when compared to those of the untreated soil. This may be particularly relevant with respect to a potential authorisation to cultivate glyphosate-tolerant maize in the European Union.


Applied and Environmental Microbiology | 2015

Novel pH-Stable Glycoside Hydrolase Family 3 β-Xylosidase from Talaromyces amestolkiae: an Enzyme Displaying Regioselective Transxylosylation.

Manuel Nieto-Domínguez; Laura I. de Eugenio; Jorge Barriuso; Alicia Prieto; Beatriz Fernández de Toro; Angeles Canales-Mayordomo; María Jesús Martínez

ABSTRACT This paper reports on a novel β-xylosidase from the hemicellulolytic fungus Talaromyces amestolkiae. The expression of this enzyme, called BxTW1, could be induced by beechwood xylan and was purified as a glycoprotein from culture supernatants. We characterized the gene encoding this enzyme as an intronless gene belonging to the glycoside hydrolase gene family 3 (GH3). BxTW1 exhibited transxylosylation activity in a regioselective way. This feature would allow the synthesis of oligosaccharides or other compounds not available from natural sources, such as alkyl glycosides displaying antimicrobial or surfactant properties. Regioselective transxylosylation, an uncommon combination, makes the synthesis reproducible, which is desirable for its potential industrial application. BxTW1 showed high pH stability and Cu2+ tolerance. The enzyme displayed a pI of 7.6, a molecular mass around 200 kDa in its active dimeric form, and Km and V max values of 0.17 mM and 52.0 U/mg, respectively, using commercial p-nitrophenyl-β-d-xylopyranoside as the substrate. The catalytic efficiencies for the hydrolysis of xylooligosaccharides were remarkably high, making it suitable for different applications in food and bioenergy industries.


BMC Genomics | 2013

Fungal genomes mining to discover novel sterol esterases and lipases as catalysts

Jorge Barriuso; Alicia Prieto; María Jesús Martínez

BackgroundSterol esterases and lipases are enzymes able to efficiently catalyze synthesis and hydrolysis reactions of both sterol esters and triglycerides and due to their versatility could be widely used in different industrial applications. Lipases with this ability have been reported in the yeast Candida rugosa that secretes several extracellular enzymes with a high level of sequence identity, although different substrate specificity. This versatility has also been found in the sterol esterases from the ascomycetes Ophiostoma piceae and Melanocarpus albomyces.ResultsIn this work we present an in silico search of new sterol esterase and lipase sequences from the genomes of environmental fungi. The strategy followed included identification and search of conserved domains from these versatile enzymes, phylogenetic studies, sequence analysis and 3D modeling of the selected candidates.ConclusionsSix potential putative enzymes were selected and their kinetic properties and substrate selectivity are discussed on the basis of their similarity with previously characterized sterol esterases/lipases with known structures.


Applied Microbiology and Biotechnology | 2016

Properties, structure, and applications of microbial sterol esterases.

María Eugenia Vaquero; Jorge Barriuso; María Jesús Martínez; Alicia Prieto

According to their substrate preferences, carboxylic ester hydrolases are organized in smaller clusters. Among them, sterol esterases (EC 3.1.1.13), also known as cholesterol esterases, act on fatty acid esters of cholesterol and other sterols in aqueous media, and are also able to catalyze synthesis by esterification or transesterification in the presence of organic solvents. Mammalian cholesterol esterases are intracellular enzymes that have been extensively studied since they are essential in lipid metabolism and cholesterol absorption, and the natural role of some microbial sterol esterases is supposed to be similar. However, besides these intracellular enzymes, a number of microbes produce extracellular sterol esterases, which show broad stability, selectivity, or wide substrate specificity, making them interesting for the industry. In spite of this, there is little information about microbial sterol esterases, and only a small amount of them have been characterized. Some of the most commercially exploited cholesterol esterases are produced by Pseudomonas species and by Candida rugosa, although in the last case they are usually described and named as “high substrate versatility lipases.” From a structural point of view, most of them belong to the α/β-hydrolase superfamily and have a conserved “catalytic triad” formed by His, an acidic amino acid and a Ser residue that is located in a highly conserved GXSXG sequence. In this review, the information available on microbial sterol esterases has been gathered, taking into account their origin, production and purification, heterologous expression, structure, stability, or substrate specificity, which are the main properties that make them attractive for different applications. Moreover, a comprehensive phylogenetic analysis on available sequences of cholesterol esterases has been done, including putative sequences deduced from public genomes.


Journal of Structural Biology | 2014

Crystal structures of Ophiostoma piceae sterol esterase: Structural insights into activation mechanism and product release

Javier Gutiérrez-Fernández; María Eugenia Vaquero; Alicia Prieto; Jorge Barriuso; María Jesús Martínez; Juan A. Hermoso

Sterol esterases are able to efficiently hydrolyze both sterol esters and triglycerides and to carry out synthesis reactions in the presence of organic solvents. Their high versatility makes them excellent candidates for biotechnological purposes. Sterol esterase from fungus Ophiostoma piceae (OPE) belongs to the family abH03.01 of the Candida rugosa lipase-like proteins. Crystal structures of OPE were solved in this study for the closed and open conformations. Enzyme activation involves a large displacement of the conserved lid, structural rearrangements of loop α16-α17, and formation of a dimer with a large opening. Three PEG molecules are placed in the active site, mimicking chains of the triglyceride substrate, demonstrating the position of the oxyanion hole and the three pockets that accommodate the sn-1, sn-2 and sn-3 fatty acids chains. One of them is an internal tunnel, connecting the active center with the outer surface of the enzyme 30 Å far from the catalytic Ser220. Based on our structural and biochemical results we propose a mechanism by which a great variety of different substrates can be hydrolyzed in OPE paving the way for the construction of new variants to improve the catalytic properties of these enzymes and their biotechnological applications.


Applied and Environmental Microbiology | 2015

Quorum-Sensing Mechanisms Mediated by Farnesol in Ophiostoma piceae: Effect on Secretion of Sterol Esterase

Felipe de Salas; María Jesús Martínez; Jorge Barriuso

ABSTRACT Ophiostoma piceae CECT 20416 is a dimorphic wood-staining fungus able to produce an extracellular sterol-esterase/lipase (OPE) that is of great biotechnological interest. In this work, we have studied the morphological change of this fungus from yeast to hyphae, which is associated with the cell density-related mechanism known as quorum sensing (QS), and how this affects the secretion of OPE. The data presented here confirm that the molecule E,E-farnesol accumulates as the cell number is growing within the population. The exogenous addition of this molecule or spent medium to the cultures increased the extracellular activity of OPE 2.5 times. This fact was related not to an increase in microbial biomass or in the expression of the gene coding for OPE but to a marked morphological transition in the cultures. Moreover, the morphological transition also occurred when a high cell density was inoculated into the medium. The results suggest that E,E-farnesol regulates through QS mechanisms the morphological transition in the dimorphic fungus O. piceae and that it is associated with a higher extracellular esterase activity. Furthermore, identification and transcriptional analysis of genes tup1 and cyr1, which are involved in the response, was carried out. Here we report enhanced production of a sterol-esterase/lipase of biotechnological interest by means of QS mechanisms. These results may be useful in increasing the production of secreted enzymes of other dimorphic fungi of biotechnological interest.


BMC Biotechnology | 2015

Identification and characterization of laccase-type multicopper oxidases involved in dye-decolorization by the fungus Leptosphaerulina sp.

Ledys S. Copete; Xiomara Chanagá; Jorge Barriuso; María F. López-Lucendo; María Jesús Martínez; Susana Camarero

BackgroundFungal laccases are multicopper oxidases (MCOs) with high biotechnological potential due to their capability to oxidize a wide range of aromatic contaminants using oxygen from the air. Albeit the numerous laccase-like genes described in ascomycete fungi, ascomycete laccases have been less thoroughly studied than white-rot basidiomycetous laccases. A variety of MCO genes has recently been discovered in plant pathogenic ascomycete fungi, however little is known about the presence and function of laccases in these fungi or their potential use as biocatalysts. We aim here to identify the laccase-type oxidoreductases that might be involved in the decolorization of dyes by Leptosphaerulina sp. and to characterize them as potential biotechnological tools.ResultsA Leptosphaerulina fungal strain, isolated from lignocellulosic material in Colombia, produces laccase as the main ligninolytic oxidoreductase activity during decolorization of synthetic organic dyes. Four laccase-type MCO genes were partially amplified from the genomic DNA using degenerate primers based on laccase-specific signature sequences. The phylogenetic analysis showed the clustering of Lac1, Lac4 and Lac3 with ascomycete laccases, whereas Lac2 grouped with fungal ferroxidases (together with other hypothetical laccases). Lac3, the main laccase produced by Leptosphaerulina sp. in dye decolorizing and laccase-induced cultures (according to the shotgun analysis of both secretomes) was purified and characterized in this study. It is a sensu-stricto laccase able to decolorize synthetic organic dyes with high efficiency particularly in the presence of natural mediator compounds.ConclusionsThe searching for laccase-type MCOs in ascomycetous families where their presence is poorly known, might provide a source of biocatalysts with potential biotechnological interest and shed light on their role in the fungus. The information provided by the use of genomic and proteomic tools must be combined with the biochemical evaluation of the enzyme to prove its catalytic activity and applicability potential.

Collaboration


Dive into the Jorge Barriuso's collaboration.

Top Co-Authors

Avatar

María Jesús Martínez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alicia Prieto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Eugenia Vaquero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rafael P. Mellado

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Laura I. de Eugenio

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manuel Nieto-Domínguez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José R. Valverde

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Fernández de Toro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. A. Méndez-Líter

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan A. Hermoso

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge