Jorge D. Martinez
Polytechnic University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jorge D. Martinez.
IEEE Transactions on Nuclear Science | 2005
Christoph W. Lerche; J. Benlloch; F. Sánchez; N. Pavón; B. Escat; E. N. Gimenez; M. Fernandez; I. Torres; M. Gimenez; A. Sebastia; Jorge D. Martinez
We have studied a new and inexpensive method of measuring the depth of interaction (DOI) in /spl gamma/-ray detectors with large-sized scintillation crystals. This method takes advantage of the strong correlation between the width of the undisturbed light-distribution in continuous crystals and the /spl gamma/-rays DOI. In order to quantify the dependence of the distributions width with respect to the DOI, we first studied an analytical model of the light-distribution and tested it by means of Monte Carlo (MC) simulations of the light transport inside the crystal. Further we present an inexpensive modification of the commonly used charge division circuit that allows analog and instantaneous computation of the light-distributions second moment without affecting the determination of the centroid. This redesigned resistor network is based on the position-sensitive proportional counter (DPC) readout and allows, together with position sensitive photo-detectors, the additional measurement of the light-distributions standard-deviation /spl sigma/. We tested the proposed circuit using the design-tool OrCAD and found the signal sufficiently large for digitalization. Finally, we conducted MC simulations of a realistic Positron Emission Tomography (PET) detector module setup that mimic a continuous Lu/sub 2/SiO/sub 5/:Ce/sup 3+/ (LSO) crystal of dimensions 40/spl times/40/spl times/10 mm/sup 3/ together with the new large area position-sensitive photo multiplier tube (PSPMT) H8500 from Hamamatsu. The influence of Compton scattering on the DOI determination was also estimated by MC simulations. Altogether, we obtained /spl les/ 5 mm DOI resolution. PACS: 87.57.Ce, 87.58.Fg, 87.62.+n, 07.85.-m.
Medical Physics | 2006
F. Sánchez; Marcos Fernandez; M. Giménez; J. Benlloch; M. J. Rodriguez-Alvarez; F. García de Quirós; Ch.W. Lerche; N. Pavón; J.A. Palazon; Jorge D. Martinez; A. Sebastia
We have developed two prototypes of portable gamma cameras for medical applications based on a previous prototype designed and tested by our group. These cameras use a CsI(Na) continuous scintillation crystal coupled to the new flat-panel-type multianode position-sensitive photomultiplier tube, H8500 from Hamamatsu Photonics. One of the prototypes, mainly intended for intrasurgical use, has a field of view of 44×44mm2, and weighs 1.2kg. Its intrinsic resolution is better than 1.5mm and its energy resolution is about 13% at 140keV. The second prototype, mainly intended for osteological, renal, mammary, and endocrine (thyroid, parathyroid, and suprarenal) scintigraphies, weighs a total of 2kg. Its average spatial resolution is 2mm; it has a field of view of 95×95mm2, with an energy resolution of about 15% at 140keV. The main advantages of these gamma camera prototypes with respect to those previously reported in the literature are high portability and low weight, with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the mini gamma cameras, and no external electronic devices are required. The cameras are only connected through the universal serial bus port to a portable PC. In this paper, we present the design of the cameras and describe the procedures that have led us to choose their configuration together with the most important performance features of the cameras. For one of the prototypes, clinical tests on melanoma patients are presented and images are compared with those obtained with a conventional camera.
IEEE Microwave and Wireless Components Letters | 2012
Jorge D. Martinez; Stefano Sirci; M. Taroncher; Vicente E. Boria
In this letter, the design and experimental results of compact low loss combline filters, based on the extension of the classical coaxial waveguide resonator to Substrate Integrated Waveguide (SIW) technology, are succesfully demonstrated. A three-pole 5% FBW Chebyshev filter has been designed, fabricated and measured. The fabricated device shows an excellent agreement with simulated results. These structures keep the low-cost fabrication scheme of single-layer PCB processing, while requiring less than half the area compared to a conventional SIW design.
IEEE Transactions on Nuclear Science | 2006
Ramón J. Aliaga; Jorge D. Martinez; R. Gadea; A. Sebastia; J. Benlloch; F. Sánchez; N. Pavón; Ch.W. Lerche
This paper studies the use of Neural Networks (NNs) for estimating the position of impinging photons in gamma ray detector modules for PET cameras based on continuous scintillators and Multi-Anode Photomultiplier Tubes (MA-PMTs). The detector under study is composed of a 49/spl times/49/spl times/10 mm/sup 3/ continuous slab of LSO coupled to a flat panel H8500 MA-PMT. Four digitized signals from a charge division circuit, which collects currents from the 8/spl times/8 anode matrix of the photomultiplier, are used as inputs to the NN, thus reducing drastically the number of electronic channels required. We have simulated the computation of the position for 511 keV gamma photons impacting perpendicularly to the detector surface. Thus, we have performed a thorough analysis of the NN architecture and training procedures in order to achieve the best results in terms of spatial resolution and bias correction. Results obtained using GEANT4 simulation toolkit show a resolution of 1.3 mm/1.9 mm FWHM at the center/edge of the detector and less than 1 mm of systematic error in the position near the edges of the scintillator. The results confirm that NNs can partially model and correct the non-uniform detector response using only the position-weighted signals from a simple 2D DPC circuit. Linearity degradation for oblique incidence is also investigated. Finally, the NN can be implemented in hardware for parallel real time corrected Line-of-Response (LOR) estimation. Results on resources occupancy and throughput in FPGA are presented.
IEEE Transactions on Nuclear Science | 2004
Jorge D. Martinez; J. Benlloch; Joaquín Cerdá; Ch.W. Lerche; N. Pavón; A. Sebastia
This paper is framed into the Positron Emission Mammography (PEM) project, whose aim is to develop an innovative gamma ray sensor for early breast cancer diagnosis. Currently, breast cancer is detected using low-energy X-ray screening. However, functional imaging techniques such as PET/FDG could be employed to detect breast cancer and track disease changes with greater sensitivity. Furthermore, a small and less expensive PET camera can be utilized minimizing main problems of whole body PET. To accomplish these objectives, we are developing a new gamma ray sensor based on a newly released photodetector. However, a dedicated PEM detector requires an adequate data acquisition (DAQ) and processing system. The characterization of gamma events needs a free-running analog-to-digital converter (ADC) with sampling rates of more than 50 Ms/s and must achieve event count rates up to 10 MHz. Moreover, comprehensive data processing must be carried out to obtain event parameters necessary for performing the image reconstruction. A new generation digital signal processor (DSP) has been used to comply with these requirements. This device enables us to manage the DAQ system at up to 80 Ms/s and to execute intensive calculi over the detector signals. This paper describes our designed DAQ and processing architecture whose main features are: very high-speed data conversion, multichannel synchronized acquisition with zero dead time, a digital triggering scheme, and high throughput of data with an extensive optimization of the signal processing algorithms.
IEEE Microwave and Wireless Components Letters | 2011
Romain Stefanini; Jorge D. Martinez; Matthieu Chatras; Arnaud Pothier; Vicente E. Boria; Pierre Blondy
This paper presents a 14 GHz high-Q (quality factor) tunable resonator using microelectromechanical system (MEMS) varactors. A brass surface mountable cavity has been bonded on a fused silica wafer on which are processed three 1.1 mm long MEMS varactors. Their location has been optimized in order to obtain a wide frequency shift, when the cantilevers are actuated on the substrate. 15% tuning range from 11.9 GHz to 14.2 GHz has been obtained with a continuous shift from 11.9 GHz to 13.6 GHz. Measurements result in an average unloaded quality factor (Qu) of 480 over the operating frequency band.
international conference hybrid intelligent systems | 2005
Leonid Sheremetov; Ildar Z. Batyrshin; Jorge D. Martinez; Hector Rodriguez; Denis Filatov
Lost circulation is the most common problem encountered when drilling. This paper describes a distributed hybrid intelligent system, called SmartDrill, using fuzzy logic, expert system framework and Web services for helping petroleum engineers to diagnose and solve lost circulation problems. The fuzzy algebra of strict monotonic operations is used as an underlying model for expert system development. Its realization in inference procedures of expert systems is simpler than for expert systems based on lexicographic operations. Overall, the system architecture is discussed and implementation details are provided. The system is aimed to help in making decisions at the operational level and is at field testing phase in PEMEX, Mexican Oil Company.
next generation internet | 2004
David García; Jorge D. Martinez; Vicent Pla
We evaluate different call admission control policies in various multiservice cellular scenarios. For each of the studied policies we obtain the maximum calling rate that can be offered to the system to achieve a given QoS objective defined in terms of blocking probabilities. We propose an optimization methodology based on a hill climbing algorithm to find the optimum configuration for most policies. The results show that policies of the trunk reservation class outperform policies that produce a product-form solution and the improvement ranges approximately between 5 and 15% in the scenarios studied.
IEEE Antennas and Wireless Propagation Letters | 2011
Alejandro L. Borja; Jorge Carbonell; Jorge D. Martinez; Vicente E. Boria; D. Lippens
This letter presents a tunable bandwidth bandpass filter based on varactor-loaded metamaterial coplanar waveguide (CPW) lines. The CPW lines are based on series gaps and split-ring resonators. The varactors are reverse-biased semiconductor diodes connected between both sides of each series gap. This configuration, directly inspired from the so-called metamaterial technology, takes advantage of the high dispersion of the loaded transmission line. Therefore, strong permittivity and permeability responses induced by means of the resonators are obtained. A single varactor-loaded transmission line is first analyzed. Then, a third-order tunable filter with fractional bandwidth tuning range from 5.8% to 21.5% is experimentally assessed. The proposed filters can be used in several practical applications such as multichannel wireless and satellite communication systems, where reconfigurable devices are often required.
IEEE Microwave and Wireless Components Letters | 2015
Stefano Sirci; Jorge D. Martinez; Joaquin Vague; Vicente E. Boria
The design of substrate integrated waveguide (SIW) diplexers, based on combline triplet sections with transmission zeros (TZs) placed below and above the passband, is presented. In order to control the location of the TZs, positive and negative couplings are conveniently provided. A highly compact implementation based on circular substrate integrated coaxial resonators is proposed. An X-band diplexer with channel center frequencies at 9.5 and 10.5 GHz and absolute bandwidths of 400 MHz is designed. The structure shows important advantages in terms of size reduction, while keeping good insertion losses as well as high rejection and isolation levels.