Jorge De Alba
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jorge De Alba.
Thorax | 2012
Kristof Raemdonck; Jorge De Alba; Mark A. Birrell; Megan S. Grace; Sarah A. Maher; Charles G Irvin; John R Fozard; Paul M. O'Byrne; Maria G. Belvisi
Background In allergic asthma, exposure to relevant antigens leads to an early asthmatic response (EAR) followed, in certain subjects, by a late asthmatic response (LAR). Although many subjects with asthma consider LAR to be one of the defining symptoms of their disease, and despite its widespread use in the clinical assessment of new therapeutic entities, the mechanism underlying the LAR remains unclear. Method A study was undertaken using ovalbumin-sensitised and challenged Brown Norway rat and C57BL/6J mouse models which recapitulate phenotypic features of allergic asthma including the LAR and its susceptibility to clinically effective agents. Results In conscious animals an EAR was followed by a LAR. The LAR was subjectively evidenced by audible (wheeze) and visual signs of respiratory distress associated with quantifiable changes in non-invasive lung function assessment. Treatments that attenuated the EAR failed to impact on the LAR and, while anaesthesia did not impact on EAR, it abolished LAR. A key role for airway sensory neuronal reflexes in the LAR was therefore hypothesised, which was confirmed by the blockade observed after administration of ruthenium red (non-selective cation channel blocker), HC-030031 (TRPA1 inhibitor) and tiotropium bromide (anticholinergic) but not JNJ-17203212 (TRPV1 inhibitor). Conclusion These results suggest that LAR involves the following processes: allergen challenge triggering airway sensory nerves via the activation of TRPA1 channels which initiates a central reflex event leading to a parasympathetic cholinergic constrictor response. These data are supported by recent clinical trials suggesting that an anticholinergic agent improved symptoms and lung function in patients with asthma.
Journal of Pharmacology and Experimental Therapeutics | 2012
Mònica Aparici; Mireia Gómez-Angelats; Dolors Vilella; Raquel Otal; Carla Carcasona; Marisa Viñals; Israel Ramos; Jorge De Alba; Jordi Gras; Julio Cortijo; Esteban J. Morcillo; Carlos Puig; Hamish Ryder; Jorge Beleta; Montserrat Miralpeix
Abediterol is a novel potent, long-acting inhaled β2-adrenoceptor agonist in development for the treatment of asthma and chronic obstructive pulmonary disease. Abediterol shows subnanomolar affinity for the human β2-adrenoceptor and a functional selectivity over β1-adrenoceptors higher than that of formoterol and indacaterol in both a cellular model with overexpressed human receptors and isolated guinea pig tissue. Abediterol is a full agonist at the human β2-adrenoceptor (Emax = 91 ± 5% of the maximal effect of isoprenaline). The potency and onset of action that abediterol shows in isolated human bronchi (EC50 = 1.9 ± 0.4 nM; t½ onset = 7–10 min) is not significantly different from that of formoterol, but its duration of action (t½ ∼ 690 min) is similar to that of indacaterol. Nebulized abediterol inhibits acetylcholine-induced bronchoconstriction in guinea pigs in a concentration-dependent manner, with higher potency and longer duration of action (t½ = 36 h) than salmeterol (t½ = 6 h) and formoterol (t½ = 4 h) and similar duration of action to indacaterol up to 48 h. In dogs, the bronchoprotective effect of abediterol is more sustained than that of salmeterol and indacaterol at doses without effects on heart rate, thus showing a greater safety margin (defined as the ratio of dose increasing heart rate by 5% and dose inhibiting bronchospasm by 50%) than salmeterol, formoterol, and indacaterol (5.6 versus 3.3, 2.2, and 0.3, respectively). In conclusion, our results suggest that abediterol has a preclinical profile for once-daily dosing in humans together with a fast onset of action and a favorable cardiovascular safety profile.
Journal of Pharmacology and Experimental Therapeutics | 2008
Matthew C. Catley; Mark A. Birrell; Elizabeth Hardaker; Jorge De Alba; Stuart N. Farrow; Saleem Haj-Yahia; Maria G. Belvisi
Estrogen receptor (ER) β agonists have been demonstrated to possess anti-inflammatory properties in inflammatory disease models. The objective of this study was to determine whether ERβ agonists affect in vitro and in vivo preclinical models of asthma. mRNA expression assays were validated in human and rodent tissue panels. These assays were then used to measure expression in human cells and our characterized rat model of allergic asthma. ERB-041 [7-ethenyl-2-(3-fluoro-4-hydroxyphenyl)-1,3-benzoxazol-5-ol], an ERβ agonist, was profiled on cytokine release from interleukin-1β-stimulated human airway smooth muscle (HASM) cells and in the rodent asthma model. Although ERβ expression was demonstrated at the gene and protein level in HASM cells, the agonist failed to have an impact on the inflammatory response. Similarly, in vivo, we observed temporal modulation of ERβ expression after antigen challenge. However, the agonist failed to have an impact on the model endpoints such as airway inflammation, even though plasma levels reflected linear compound exposure and was associated with an increase in receptor activation after drug administration. In these modeling systems of airway inflammation, an ERβ agonist was ineffective. Although ERβ agonists are anti-inflammatory in certain models, this novel study would suggest that they would not be clinically useful in the treatment of asthma.
Journal of Pharmacology and Experimental Therapeutics | 2006
Mark A. Birrell; Sissie Wong; Abdel Dekkak; Jorge De Alba; Saleem Haj-Yahia; Maria G. Belvisi
Since the discovery of the first matrix metalloproteinase (MMP), this ever-growing family of proteinases has been the subject of intense research. Although it was initially believed that MMPs were solely involved in matrix turnover and degradation, there are now data suggesting MMPs are actively involved in the inflammatory process. In previous studies, we have demonstrated an increase in MMP expression in human cell-based assays and in preclinical rat models of airway inflammation. Therefore, the aim of this study was to characterize the role of MMPs in these models by profiling the impact of a broad-spectrum MMP inhibitor. In lipopolysaccharide (LPS)-stimulated THP-1 cells and primary human lung tissue macrophages, the MMP inhibitor had no significant effect on the release of tumor necrosis factor-α, interleukin (IL)-8, IL-1β, growth-regulated oncogene-α, macrophage inflammatory protein-1α, or IL-6 whereas dexamethasone has a significant impact on all cytokines from both cell types. Similarly, in the more biologically complex LPS-driven rat model of airway inflammation, the MMP inhibitor did not have an impact on mediator release and cellular burden. The compound did, however, significantly reduce levels of lung MMP-9. Furthermore, in a “disease” model, the compound did not affect cellular inflammation but did significantly reduce elastase-induced experimental emphysema. In summary, these data demonstrate for the first time that MMPs do not play a role in the increase in inflammatory mediators or cellular burden observed in these preclinical models. However, they do appear to be involved in the elastase-driven breakdown of airway structure, which is not due to a direct effect of the stimulus.
Journal of Immunology | 2008
Mark A. Birrell; Jorge De Alba; Matthew C. Catley; Elizabeth Hardaker; Sissie Wong; Michael T. Collins; Deborah L. Clarke; Stuart N. Farrow; Timothy M. Willson; Jon L. Collins; Maria G. Belvisi
The liver X receptors (LXRα/β) are orphan nuclear receptors that are expressed in a large number of cell types and have been shown to have anti-inflammatory properties. Nuclear receptors have previously proved to be amenable targets for small molecular mass pharmacological agents in asthma, and so the effect of an LXR ligand was assessed in models of allergic airway inflammation. LXR agonist, GW 3965, was profiled in rat and mouse models of allergic asthma. In the Brown Norway rats, GW 3965 (3–30 mg/kg) was unable to reduce the bronchoalveolar lavage eosinophilia associated with this model and had no impact on inflammatory biomarkers (eotaxin and IL-1β). The compound did significantly stimulate ABCA-1 (ATP-binding cassette A1) mRNA expression, indicating that there was adequate exposure/LXR activation. In the mouse model, the LXR ligand surprisingly increased airway reactivity, an effect that was apparent in both the Ag and nonchallenged groups. This increase was not associated with a change in lung tissue inflammation or number of mucus-containing cells. There was, however, a marked increase in airway smooth muscle thickness in both treated groups. We demonstrated an increase in contractile response to exogenous methacholine in isolated airways taken from LXR agonist-treated animals compared with the relevant control tissue. We corroborated these findings in a human system by demonstrating increased proliferation of cultured airway smooth muscle. This phenomenon, if evidenced in man, would indicate that LXR ligands may directly increase airway reactivity, which could be detrimental, especially in patients with existing respiratory disease and with already compromised lung function.
Pharmacological Research | 2015
Isabel Ramis; Raquel Otal; Cristina Carreño; Anna Domènech; Peter Eichhorn; Adelina Orellana; Mónica Maldonado; Jorge De Alba; Neus Prats; Joan-Carles Fernández; Bernat Vidal; Montserrat Miralpeix
Spleen tyrosine kinase (Syk) is essential for signal transduction of immunoreceptors. Inhibition of Syk abrogates mast cell degranulation and B cell responses. We hypothesized that Syk inhibition in the lung by inhaled route could block airway mast cells degranulation and the early asthmatic response without the need of systemic exposure. We discovered LAS189386, a novel Syk inhibitor with suitable properties for inhaled administration. The aim of this study was to characterize the in vitro and in vivo profile of LAS189386. The compound was profiled in Syk enzymatic assay, against a panel of selected kinases and in Syk-dependent cellular assays in mast cells and B cells. Pharmacokinetics and in vivo efficacy was assessed by intratracheal route. Airway resistance and mast cell degranulation after OVA challenge was evaluated in an ovalbumin-sensitized Brown Norway rat model. LAS189386 potently inhibits Syk enzymatic activity (IC50 7.2 nM), Syk phosphorylation (IC50 41 nM), LAD2 cells degranulation (IC50 56 nM), and B cell activation (IC50 22 nM). LAS189386 inhibits early asthmatic response and airway mast cell degranulation without affecting systemic mast cells. The present results support the hypothesis that topical inhibition of Syk in the lung, without systemic exposure, is sufficient to inhibit EAR in rats. Syk inhibition by inhaled route constitutes a promising therapeutic option for asthma.
European Journal of Pharmacology | 2016
Mònica Aparici; Amadeu Gavaldà; Israel Ramos; Carla Carcasona; Raquel Otal; Joan Antoni Fernández-Blanco; José Luis Montero; Vicente Marco García; Jorge De Alba; Christopher Doe; Carlos Puig; Dolors Vilella; Montserrat Miralpeix
Abediterol is a novel long-acting β2-adrenoceptor agonist (LABA) currently in development for once-daily combination maintenance therapy of asthma and COPD. This study investigated the preclinical profile of abediterol in terms of affinity, potency, selectivity, duration of action and cardiac effects in comparison to the marketed once-daily LABAs indacaterol, olodaterol and vilanterol. Abediterol was the compound with the highest in vitro potency for dog, guinea pig and human β2-adrenoceptors. In electrical field stimulated guinea pig trachea, abediterol demonstrated 5-, 44- and 77-fold greater potency than olodaterol, indacaterol and vilanterol, respectively. In anaesthetised guinea pigs, inhaled abediterol was also the most potent compound, with 5-20 times higher bronchoprotective potency than other once-daily LABAs against acetylcholine. The bronchoprotective half-life of abediterol in guinea pigs was 36h compared with 51h for indacaterol, 47h for olodaterol, and 18h for vilanterol. In anaesthetised dogs, abediterol also inhibited acetylcholine-induced bronchoconstriction, with higher potency than olodaterol and vilanterol [ID40 (dose inhibiting bronchoconstriction by 40%) of 0.059µg/kg, 0.180µg/kg and 2.870µg/kg, respectively]. In parallel, effects on heart rate in dogs were also measured. Abediterol showed greater safety index (defined as the ratio of the maximal dose without effect on heart rate and the ID40) than olodaterol and vilanterol (10.5 versus 4.9 and 2.4, respectively). Taken together, these data suggest that abediterol offers potent bronchodilation and a sustained duration of action suited to once-daily dosing, plus a reduced potential for class-related cardiac side effects.
Clinical Science | 2015
Jorge De Alba; Raquel Otal; Elena Calama; Anna Domènech; Neus Prats; Neil Gozzard; Montserrat Miralpeix
RNA viruses are a major cause of respiratory infections and are known to exacerbate asthma and other respiratory diseases. Our aim was to test the ability of poly(I:C) (polyinosinic:polycytidylic acid), a viral surrogate, to elicit exacerbation in a model of severe asthma driven by HDM (house dust mite) in FCA (Freunds complete adjuvant). Poly(I:C) was administered intranasally around the HDM challenge in FCA-HDM-sensitized animals. Changes in AHR (airway hyperresponsiveness), BALF (bronchoalveolar lavage fluid) inflammatory infiltrate, HDM-specific immunoglobulins and cytokine/chemokine release were evaluated at different points after the challenge. The effect of oral dexamethasone was also assessed. Exacerbation was achieved when poly(I:C) was administered 24 h before the HDM challenge and was characterized by enhanced AHR and an increase in the numbers of neutrophils, macrophages and lymphocytes in the BALF. Th1, Th2 and Th17 cytokines were also elevated at different time points after the challenge. Peribronchial and alveolar inflammation in lung tissue were also augmented. AHR and inflammatory infiltration showed reduced sensitivity to dexamethasone treatment. We have set up a model that mimics key aspects of viral exacerbation in a corticosteroid-refractory asthmatic phenotype which could be used to evaluate new therapies for this condition.
Bioorganic & Medicinal Chemistry Letters | 2015
Cristina Esteve; Jacob González; Silvia Gual; Laura Vidal; Soledad Alzina; Sonia Sentellas; Irene Jover; Raquel Horrillo; Jorge De Alba; Montserrat Miralpeix; Gema Tarrason; Bernat Vidal
Synthesis and SAR of a series of 7-azaindoles as Orai channel inhibitors showing good potency inhibiting IL-2 production in Jurkat cells is described. Compound 14d displaying best pharmacokinetic properties was further characterized in a model of allergen induced asthma showing inhibition in the number of eosinophils in BALF. High lipophilicity remains as one of the main challenges for this class of compounds.
Pulmonary Pharmacology & Therapeutics | 2015
Manminder Kaur; Mark A. Birrell; Bilel Dekkak; Sophie Reynolds; Sissie Wong; Jorge De Alba; Kristof Raemdonck; Simon Hall; Karen D. Simpson; Malcolm Begg; Maria G. Belvisi; Dave Singh
Asthma is increasing globally and current treatments only manage a proportion of patients. There is an urgent need to develop new therapies. Lymphocytes are thought to play a central role in the pathophysiology of asthma through the production of inflammatory mediators. This is thought to be via the transcription factor NFAT which in turn can be activated through Ca(2+) release-activated Ca(2+) (CRAC) channels. The aim of this work was to investigate the role of CRAC in clinical and pre-clinical models of allergic asthma. Initial data demonstrated that the NFAT pathway is increased in stimulated lymphocytes from asthmatics. To confirm a role for the channel we showed that a selective inhibitor, Synta 66, blocked mediator production from lymphocytes. Synta 66 inhibited CD2/3/28 induced IL-2, IL-7, IL-13 & IFNΥ in a concentration-dependent manner in healthy and severe asthma donors, with over 60% inhibition observed for all cytokines. NFAT pathway was also increased in a pre-clinical asthma model. In this model we have demonstrated that CRAC played a central role in the airway inflammation and late asthmatic response (LAR). In conclusion, our data provides evidence that suggests targeting CRAC channels could be of therapeutic benefit for asthma sufferers.