Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge F. Mejias is active.

Publication


Featured researches published by Jorge F. Mejias.


Neural Computation | 2009

Maximum memory capacity on neural networks with short-term synaptic depression and facilitation

Jorge F. Mejias; Joaquín J. Torres

In this work, we study, analytically and employing Monte Carlo simulations, the influence of the competition between several activity-dependent synaptic processes, such as short-term synaptic facilitation and depression, on the maximum memory storage capacity in a neural network. In contrast to the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve static activity patterns, synaptic facilitation enhances the storage capacity in different contexts. In particular, we found optimal values of the relevant synaptic parameters (such as the neurotransmitter release probability or the characteristic facilitation time constant) for which the storage capacity can be maximal and similar to the one obtained with static synapses, that is, without activity-dependent processes. We conclude that depressing synapses with a certain level of facilitation allow recovering the good retrieval properties of networks with static synapses while maintaining the nonlinear characteristics of dynamic synapses, convenient for information processing and coding.


PLOS ONE | 2010

Irregular dynamics in up and down cortical states.

Jorge F. Mejias; Hilbert J. Kappen; Joaquín J. Torres

Complex coherent dynamics is present in a wide variety of neural systems. A typical example is the voltage transitions between up and down states observed in cortical areas in the brain. In this work, we study this phenomenon via a biologically motivated stochastic model of up and down transitions. The model is constituted by a simple bistable rate dynamics, where the synaptic current is modulated by short-term synaptic processes which introduce stochasticity and temporal correlations. A complete analysis of our model, both with mean-field approaches and numerical simulations, shows the appearance of complex transitions between high (up) and low (down) neural activity states, driven by the synaptic noise, with permanence times in the up state distributed according to a power-law. We show that the experimentally observed large fluctuation in up and down permanence times can be explained as the result of sufficiently noisy dynamical synapses with sufficiently large recovery times. Static synapses cannot account for this behavior, nor can dynamical synapses in the absence of noise.


Science Advances | 2016

Feedforward and feedback frequency-dependent interactions in a large-scale laminar network of the primate cortex

Jorge F. Mejias; John D. Murray; Henry Kennedy; Xiao Jing Wang

A large-scale laminar network model sheds light on frequency-dependent interactions in the primate cortex. Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.


Journal of Computational Neuroscience | 2008

The role of synaptic facilitation in spike coincidence detection

Jorge F. Mejias; Joaquín J. Torres

Using a realistic model of activity dependent dynamical synapse, which includes both depressing and facilitating mechanisms, we study the conditions in which a postsynaptic neuron efficiently detects temporal coincidences of spikes which arrive from N different presynaptic neurons at certain frequency f. A numerical and analytical treatment of that system shows that: (1) facilitation enhances the detection of correlated signals arriving from a subset of presynaptic excitatory neurons, and (2) the presence of facilitation yields to a better detection of firing rate changes in the presynaptic activity. We also observed that facilitation determines the existence of an optimal input frequency which allows the best performance for a wide (maximum) range of the neuron firing threshold. This optimal frequency can be controlled by means of facilitation parameters. Finally, we show that these results are robust even for very noisy signals and in the presence of synaptic fluctuations produced by the stochastic release of neurotransmitters.


PLOS ONE | 2011

Emergence of Resonances in Neural Systems: The Interplay between Adaptive Threshold and Short-Term Synaptic Plasticity

Jorge F. Mejias; Joaquín J. Torres

In this work we study the detection of weak stimuli by spiking (integrate-and-fire) neurons in the presence of certain level of noisy background neural activity. Our study has focused in the realistic assumption that the synapses in the network present activity-dependent processes, such as short-term synaptic depression and facilitation. Employing mean-field techniques as well as numerical simulations, we found that there are two possible noise levels which optimize signal transmission. This new finding is in contrast with the classical theory of stochastic resonance which is able to predict only one optimal level of noise. We found that the complex interplay between adaptive neuron threshold and activity-dependent synaptic mechanisms is responsible for this new phenomenology. Our main results are confirmed by employing a more realistic FitzHugh-Nagumo neuron model, which displays threshold variability, as well as by considering more realistic stochastic synaptic models and realistic signals such as poissonian spike trains.


Frontiers in Computational Neuroscience | 2014

Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks

Jorge F. Mejias; André Longtin

Recent experimental and theoretical studies have highlighted the importance of cell-to-cell differences in the dynamics and functions of neural networks, such as in different types of neural coding or synchronization. It is still not known, however, how neural heterogeneity can affect cortical computations, or impact the dynamics of typical cortical circuits constituted of sparse excitatory and inhibitory networks. In this work, we analytically and numerically study the dynamics of a typical cortical circuit with a certain level of neural heterogeneity. Our circuit includes realistic features found in real cortical populations, such as network sparseness, excitatory, and inhibitory subpopulations of neurons, and different cell-to-cell heterogeneities for each type of population in the system. We find highly differentiated roles for heterogeneity, depending on the subpopulation in which it is found. In particular, while heterogeneity among excitatory neurons non-linearly increases the mean firing rate and linearizes the f-I curves, heterogeneity among inhibitory neurons may decrease the network activity level and induces divisive gain effects in the f-I curves of the excitatory cells, providing an effective gain control mechanism to influence information flow. In addition, we compute the conditions for stability of the network activity, finding that the synchronization onset is robust to inhibitory heterogeneity, but it shifts to lower input levels for higher excitatory heterogeneity. Finally, we provide an extension of recently reported heterogeneity-induced mechanisms for signal detection under rate coding, and we explore the validity of our findings when multiple sources of heterogeneity are present. These results allow for a detailed characterization of the role of neural heterogeneity in asynchronous cortical networks.


New Journal of Physics | 2011

Can intrinsic noise induce various resonant peaks

Joaquín J. Torres; J. Marro; Jorge F. Mejias

We theoretically describe how weak signals may be efficiently transmitted throughout more than one frequency range in noisy excitable media by a sort of stochastic multiresonance. This helps us to reinterpret recent experiments in neuroscience and to suggest that many other systems in nature might be able to exhibit several resonances. In fact, the observed behavior happens in our model as a result of competition between (i) changes in the transmitted signals as if the units were varying their activation threshold, and (ii) adaptive noise realized in the model as rapid activity-dependent fluctuations of the connection intensities. These two conditions are indeed known to characterize heterogeneously networked systems of excitable units, e.g. sets of neurons and synapses in the brain. Our results may find application also in the design of detector devices.


BMC Neuroscience | 2012

Signal cancellation and contrast invariance in electrosensory systems

Jorge F. Mejias; Gary Marsat; Kieran Bol; Erik Harvey-Girard; Leonard Maler; André Longtin

When processing sensory input, it is of vital importance for the neural systems to be able to discriminate a novel stimulus from the background of redundant, unimportant signals. Neural mechanisms responsible for prediction and cancellation of redundant information could be an efficient way to achieve such discrimination. While the concrete mechanisms that the brain employs for this task are presently unknown, a network able to perform this cancellation is thought to exist in the electrosensory lateral line lobe (ELL) of weakly electric fish [1]. This fish emits a high-frequency (600-1000 Hz) sinusoidal electric organ discharge (EOD) into its environment to sense its surroundings and communicate to conspecifics. Small objects such as prey create spatially localized amplitude modulations (AMs) of the EOD, whereas tail bending or communication signals induce spatially global AMs [2]. These AMs are detected by electroreceptors that densely cover the body of the fish, and provide feedforward input to pyramidal cells in the ELL. It is known that a subpopulation of such pyramidal cells, the superficial pyramidal (SP) cells, remove low-frequency predictable global signals (i.e. tail bending) from their input to maximize detection of novel local stimuli (i.e. prey) [1]. This is presumably achieved using a feedback pathway involving the granule cell layer (a cerebellarlike structure known as EGp). These granule cells connect to SP cells via parallel fibers (PFs) which may be acting as delay lines segregated into frequency channels to destructively interfere with the global stimulus. Recent in vitro studies found a novel burst timingdependent learning rule which would be able to shape this feedback [3]. Following a previous work [4], we study the cancellation of low-frequency simple redundant signals, i.e. sine waves, in the ELL of the weakly electric fish. The study combines in vitro data, in vivo electrophysiology recordings from neurons in the ELL and numerical modeling to address this issue. More precisely, we model the neural network responsible for signal cancellation in the ELL of the fish, and compare our predictions with electrophysiology data recorded in vivo [4]. In the model, we assume the presence of: 1) stimulus-driven feedback to the SP neurons, 2) a large variety of temporal delays in the PFs transmitting such feedback, and 3) burstinduced long-term plasticity. We show that the modeled network is able to efficiently cancel global redundant signals by shaping the feedback as a negative image of the global signal arriving to the SP cells. Such negative image is generated via the burst-induced anti-Hebbian learning rule in the PF-SP cell synapses, while the full period of the signal is covered by the incoming feedback due to the wide range of PF delays present in the network. The cancellation is found to be in agreement with in vivo recordings, and it is strong for signals with frequencies up to 16 Hz, enabling a clearer background above which to detect relevant non-repetitive stimuli such as prey signals (and thus to better capture the prey). Due to the importance of the phase-relationship between the feedback and the stimulus, the mechanism is found to be frequency-specific, suggesting the presence of multiple frequency channels as observed in vivo [4]. Interestingly, our model predicts that the cancellation is maintained for signals with different AM strengths (i.e. contrasts). Such contrast-invariance is highly desirable since natural signals would display different contrasts depending, for instance, on the distance between the fish and the origin of the EOD perturbation. * Correspondence: [email protected] Department of Physics, University of Ottawa, Ottawa, K1N 6N5 Ontario, Canada Full list of author information is available at the end of the article Mejias et al. BMC Neuroscience 2012, 13(Suppl 1):F2 http://www.biomedcentral.com/1471-2202/13/S1/F2


Frontiers in Computational Neuroscience | 2014

Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays

Jorge F. Mejias; Alexandre Payeur; Erik Selin; Leonard Maler; André Longtin

The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry—also known as “open-loop feedback”—, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain.


PLOS Computational Biology | 2013

Learning Contrast-Invariant Cancellation of Redundant Signals in Neural Systems

Jorge F. Mejias; Gary Marsat; Kieran Bol; Leonard Maler; André Longtin

Cancellation of redundant information is a highly desirable feature of sensory systems, since it would potentially lead to a more efficient detection of novel information. However, biologically plausible mechanisms responsible for such selective cancellation, and especially those robust to realistic variations in the intensity of the redundant signals, are mostly unknown. In this work, we study, via in vivo experimental recordings and computational models, the behavior of a cerebellar-like circuit in the weakly electric fish which is known to perform cancellation of redundant stimuli. We experimentally observe contrast invariance in the cancellation of spatially and temporally redundant stimuli in such a system. Our model, which incorporates heterogeneously-delayed feedback, bursting dynamics and burst-induced STDP, is in agreement with our in vivo observations. In addition, the model gives insight on the activity of granule cells and parallel fibers involved in the feedback pathway, and provides a strong prediction on the parallel fiber potentiation time scale. Finally, our model predicts the existence of an optimal learning contrast around 15% contrast levels, which are commonly experienced by interacting fish.

Collaboration


Dive into the Jorge F. Mejias's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Marro

University of Granada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hilbert J. Kappen

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Xiao Jing Wang

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge