Jorge Gutiérrez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jorge Gutiérrez.
International Journal of Food Microbiology | 2008
Jorge Gutiérrez; Catherine Barry-Ryan; Paula Bourke
The objective of this study was to evaluate the efficacy of plant essential oils (EOs) in combination and to investigate the effect of food ingredients on their efficacy. The EOs assessed in combination included basil, lemon balm, marjoram, oregano, rosemary, sage and thyme. Combinations of EOs were initially screened against Bacillus cereus, Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa using the spot-on-agar test. The influence of varying concentrations of EO combinations on efficacy was also monitored using E. coli. These preliminary studies showed promising results for oregano in combination with basil, thyme or marjoram. The checkerboard method was then used to quantify the efficacy of oregano, marjoram or thyme in combination with the remainder of selected EOs. Fractional inhibitory concentrations (FIC) were calculated and interpreted as synergy, addition, indifference or antagonism. All the oregano combinations showed additive efficacy against B. cereus, and oregano combined with marjoram, thyme or basil also had an additive effect against E. coli and P. aeruginosa. The mixtures of marjoram or thyme also displayed additive effects in combination with basil, rosemary or sage against L. monocytogenes. The effect of food ingredients and pH on the antimicrobial efficacy of oregano and thyme was assessed by monitoring the lag phase and the maximum specific growth rate of L. monocytogenes grown in model media. The model media included potato starch (0, 1, 5 or 10%), beef extract (1.5, 3, 6 or 12%), sunflower oil (0, 1, 5 or 10%) and TSB at pH levels of 4, 5, 6 or 7. The antimicrobial efficacy of EOs was found to be a function of ingredient manipulation. Starch and oils concentrations of 5% and 10% had a negative impact on the EO efficacy. On the contrary, the EOs were more effective at high concentrations of protein, and at pH 5, by comparison with pH 6 or 7. This study suggests that combinations of EOs could minimize application concentrations and consequently reduce any adverse sensory impact in food. However, their application for microbial control might be affected by food composition, therefore, careful selection of EOs appropriate to the sensory and compositional status of the food system is required. This work shows that EOs might be more effective against food-borne pathogens and spoilage bacteria when applied to ready to use foods containing a high protein level at acidic pH, as well as lower levels of fats or carbohydrates.
Food Microbiology | 2009
Jorge Gutiérrez; Catherine Barry-Ryan; Paula Bourke
The aim of this study was to optimise the antimicrobial efficacy of plant essential oils (EOs) for control of Listeria spp. and spoilage bacteria using food model media based on lettuce, meat and milk. The EOs evaluated were lemon balm, marjoram, oregano and thyme and their minimum inhibitory concentrations (MIC) were determined against Enterobacter spp., Listeria spp., Lactobacillus spp., and Pseudomonas spp. using the agar dilution method and/or the absorbance based microplate assay. MICs were significantly lower in lettuce and beef media than in TSB. Listeria strains were more sensitive than spoilage bacteria, and oregano and thyme were the most active EOs. EO combinations were investigated using the checkerboard method and Oregano combined with thyme had additive effects against spoilage organisms. Combining lemon balm with thyme yielded additive activity against Listeria strains. The effect of simple sugars and pH on antimicrobial efficacy of oregano and thyme was assessed in a beef extract and tomato serum model media. EOs retained greater efficacy at pH 5 and 2.32% sugar, but sugar concentrations above 5% did not negatively impact EO efficacy. In addition to proven antimicrobial efficacy, careful selection and investigation of EOs appropriate to the sensory profile of foods and composition of the food system is required. This work shows that EOs might be more effective against food-borne pathogens and spoilage bacteria when applied to foods containing a high protein level at acidic pH, as well as moderate levels of simple sugars.
Journal of Food Protection | 2008
Jorge Gutiérrez; Gabriel Rodriguez; Catherine Barry-Ryan; Paula Bourke
The objectives of this study were to evaluate the antimicrobial activity of plant essential oils (EOs) against foodborne pathogens and key spoilage bacteria pertinent to ready-to-eat vegetables and to screen the selected EOs for sensory acceptability. The EOs basil, caraway, fennel, lemon balm, marjoram, nutmeg, oregano, parsley, rosemary, sage, and thyme were evaluated. The bacteria evaluated were Listeria spp., Staphylococcus aureus, Lactobacillus spp., Bacillus cereus, Salmonella, Enterobacter spp., Escherichia coli, and Pseudomonas spp. Quantitative antimicrobial analyses were performed using an absorbance-based microplate assay. Efficacy was compared using MIC, the half maximum inhibitory concentration, and the increase in lag phase. Generally, gram-positive bacteria were more sensitive to EOs than were gram-negative bacteria, and Listeria monocytogenes strains were among the most sensitive. Of the spoilage organisms, Pseudomonas spp. were the most resistant. Oregano and thyme EOs had the highest activity against all the tested bacteria. Marjoram and basil EOs had selectively high activity against B. cereus, Enterobacter aerogenes, E. coli, and Salmonella, and lemon balm and sage EOs had adequate activity against L. monocytogenes and S. aureus. Within bacterial species, EO efficacy was dependent on strain and in some cases the origin of the strain. On a carrot model product, basil, lemon balm, marjoram, oregano, and thyme EOs were deemed organoleptically acceptable, but only oregano and marjoram EOs were deemed acceptable for lettuce. Selected EOs may be useful as natural and safe additives for promoting the safety and quality of ready-to-eat vegetables.
Plant Physiology | 2011
Sergio González-Pérez; Jorge Gutiérrez; Francisco García-García; Daniel Osuna; Joaquín Dopazo; Oscar Lorenzo; José L. Revuelta; Juan B. Arellano
The early transcriptional defense responses and reactive oxygen species (ROS) production in Arabidopsis (Arabidopsis thaliana) cell suspension culture (ACSC), containing functional chloroplasts, were examined at high light (HL). The transcriptional analysis revealed that most of the ROS markers identified among the 449 transcripts with significant differential expression were transcripts specifically up-regulated by singlet oxygen (1O2). On the contrary, minimal correlation was established with transcripts specifically up-regulated by superoxide radical or hydrogen peroxide. The transcriptional analysis was supported by fluorescence microscopy experiments. The incubation of ACSC with the 1O2 sensor green reagent and 2′,7′-dichlorofluorescein diacetate showed that the 30-min-HL-treated cultures emitted fluorescence that corresponded with the production of 1O2 but not of hydrogen peroxide. Furthermore, the in vivo photodamage of the D1 protein of photosystem II indicated that the photogeneration of 1O2 took place within the photosystem II reaction center. Functional enrichment analyses identified transcripts that are key components of the ROS signaling transduction pathway in plants as well as others encoding transcription factors that regulate both ROS scavenging and water deficit stress. A meta-analysis examining the transcriptional profiles of mutants and hormone treatments in Arabidopsis showed a high correlation between ACSC at HL and the fluorescent mutant family of Arabidopsis, a producer of 1O2 in plastids. Intriguingly, a high correlation was also observed with ABA deficient1 and more axillary growth4, two mutants with defects in the biosynthesis pathways of two key (apo)carotenoid-derived plant hormones (i.e. abscisic acid and strigolactones, respectively). ACSC has proven to be a valuable system for studying early transcriptional responses to HL stress.
Applied and Environmental Microbiology | 2006
Raquel Criado; Dzung B. Diep; Ågot Aakra; Jorge Gutiérrez; Ingolf F. Nes; Pablo E. Hernández; Luis M. Cintas
ABSTRACT The locations of the genetic determinants for enterocin L50 (EntL50A and EntL50B), enterocin Q (EntQ), and enterocin P (EntP) in the multiple bacteriocin producer Enterococcus faecium strain L50 were determined. These bacteriocin genes occur at different locations; entL50AB (encoding EntL50A and EntL50B) are on the 50-kb plasmid pCIZ1, entqA (encoding EntQ) is on the 7.4-kb plasmid pCIZ2, and entP (encoding EntP) is on the chromosome. The complete nucleotide sequence of pCIZ2 was determined to be 7,383 bp long and contains 10 putative open reading frames (ORFs) organized in three distinct regions. The first region contains three ORFs: entqA preceded by two divergently oriented genes, entqB and entqC. EntqB shows high levels of similarity to bacterial ATP-binding cassette (ABC) transporters, while EntqC displays no significant similarity to any known protein. The second region encompasses four ORFs (orf4 to orf7), and ORF4 and ORF5 display high levels of similarity to mobilization proteins from E. faecium and Enterococcus faecalis. In addition, features resembling a transfer origin region (oriT) were found in the promoter area of orf4. The third region contains three ORFs (orf8 to orf10), and ORF8 and ORF9 exhibit similarity to the replication initiator protein RepE from E. faecalis and to RepB proteins, respectively. To clarify the minimum requirement for EntQ synthesis, we subcloned and heterologously expressed a 2,371-bp fragment from pCIZ2 that encompasses only the entqA, entqB, and entqC genes in Lactobacillus sakei, and we demonstrated that this fragment is sufficient for EntQ production. Moreover, we also obtained experimental results indicating that EntqB is involved in ABC transporter-mediated EntQ secretion, while EntqC confers immunity to this bacteriocin.
Antimicrobial Agents and Chemotherapy | 2005
Jorge Gutiérrez; Raquel Criado; María Martín; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández
ABSTRACT The gene encoding mature enterocin P (EntP), an antimicrobial peptide from Enterococcus faecium P13, was cloned into the pPICZαA expression vector to generate plasmid pJC31. This plasmid was integrated into the genome of P. pastoris X-33, and EntP was heterologously secreted from the recombinant P. pastoris X-33t1 derivative at a higher production and antagonistic activity than from E. faecium P13.
Applied Microbiology and Biotechnology | 2007
María Antonia Martín; Jorge Gutiérrez; Raquel Criado; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández
Replacement of the leader sequence of enterocin A (EntA), a bacteriocin produced by Enterococcus faecium PLBC21, by the signal peptide of enterocin P (EntP), a sec-dependent bacteriocin produced by E. faecium P13, permitted production of EntA in Lactococcus lactis. Chimeras encoding the EntP signal peptide (SPentP) fused to mature EntA (entA), with or without its immunity gene (entiA), were cloned into the expression vector pMG36c to generate the recombinant plasmids, pMPA15 (SPentP:entA) and pMPA10i (SPentP:entA + entiA). Transformation of competent L. lactis subsp. lactis IL1403 and L. lactis subsp. cremoris NZ9000 with the recombinant plasmids permitted production of EntA by the transformed cells, and the co-production of nisin A and EntA by the L. lactis subsp. lactis DPC5598 transformants. Mature EntA fused to SPEntP is the minimum requirement for synthesis, processing and secretion of biologically active EntA in L. lactis. The production of EntA by most recombinant L. lactis hosts was larger than in the E. faecium control strains. All L. lactis derivatives showed antimicrobial activity against Listeria spp., and L. lactis (pMPA15) displayed the highest antilisterial effect.
Journal of Food Protection | 2006
María Martín; Jorge Gutiérrez; Raquel Criado; Carmen Herranz; Luis M. Cintas; Pablo E. Hernández
Samples of the intestinal content and carcasses of wood pigeons (Columba palumbus) were evaluated for enterococci with antimicrobial activity. Enterococcus faecium comprised the largest enterococcal species with antagonistic activity, followed by Enterococcusfaecalis and Enterococcus columbae. PCR amplification of genes coding bacteriocins and determination of their nucleotide sequence, and the use of specific antipeptide bacteriocin antibodies and a noncompetitive indirect enzyme-linked immunosorbent assay, permitted characterization of enterococci coding that described bacteriocins and their expression. The efaAfm determinant was the only virulence gene detected in E. faecium, whereas E. faecalis showed a larger number of virulence determinants, and E. columbae did not carry any of the virulence genes examined. Although all E. faecalis isolates manifested a potent direct antimicrobial activity, no activity was detected in supernatants of producer cells. Purification of the antagonistic activity of E. columbae PLCH2 showed multiple chromatographic fragments after matrix-assisted laser desorption-ionization time-of-flight mass spectrometry analysis, suggesting the active peptide(s) had not yet purified to homogeneity. Bacteriocinogenic E. faecium and E. columbae isolates may be considered hygienic for production of enterocins and potentially safe due to their low incidence of potential virulence genes and susceptibility of most relevant clinical antibiotics. However, the presence among the enterococci of E. faecalis strains with a potent antagonistic activity and multiple virulence factors is an issue that must be considered further.
Veterinary Parasitology | 2010
Jorge Gutiérrez; O'Donovan J; Erin J. Williams; A. Proctor; Colm Brady; Patricia X. Marques; Sheila Worrall; Jarlath E. Nally; Máire C. McElroy; Hugh F. Bassett; D. J. Sammin; David Buxton; Stephen W. Maley; Bryan Markey
A real-time PCR (rt-PCR) targeting the 529-bp repeat element (RE) of Toxoplasma gondii was used to detect and quantify the parasite burden in maternal and foetal tissues in 18 seronegative ewes infected with 3000 toxoplasma oocysts on day 90 of pregnancy. The infected ewes were sacrificed in groups of 4-6 at 21, 25, 33 and 35 days post-challenge. Ten sham inoculated pregnant ewes were used as controls. T. gondii was not detected in the control ewes or their foeti. The parasite was only detected in the maternal tissues in a few of the challenged ewes on a small number of occasions where it was identified in spleen and uterine lymph nodes. T. gondii was detected in the foetal spleen and liver at the early sacrifice times but only sporadically thereafter. In the case of amniotic, allantoic and foetal aqueous humor samples T. gondii was only detected on a small number of occasions. However, it was found in the majority of the foetal lung and placentome samples throughout the study period, while placentomes and foetal brains contained high levels of the parasite during the later stages. Histopathological examination of placentome and brain tissue from the foeti in the present study revealed a strong correlation between histopathological lesions and quantities of the parasite DNA detected. These results indicate that the cotyledonary component of the foetal membranes is the sample of choice for the diagnosis of T. gondii by rt-PCR, followed by foetal lung and brain.
Applied and Environmental Microbiology | 2009
Antonio Basanta; Carmen Herranz; Jorge Gutiérrez; Raquel Criado; Pablo E. Hernández; Luis M. Cintas
ABSTRACT A segregationally stable expression and secretion vector for Saccharomyces cerevisiae, named pYABD01, was constructed by cloning the yeast gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) into the S. cerevisiae high-copy-number expression vector pYES2. The structural genes of the two leaderless peptides of enterocin L50 (EntL50A and EntL50B) from Enterococcus faecium L50 were cloned, separately (entL50A or entL50B) and together (entL50AB), into pYABD01 under the control of the galactose-inducible promoter PGAL1. The generation of recombinant S. cerevisiae strains heterologously expressing and secreting biologically active EntL50A and EntL50B demonstrates the suitability of the MFα1s-containing vector pYABD01 to direct processing and secretion of these antimicrobial peptides through the S. cerevisiae Sec system.