Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge J. Carbó is active.

Publication


Featured researches published by Jorge J. Carbó.


Journal of the American Chemical Society | 2010

Mechanistic Insights into Alkene Epoxidation with H2O2 by Ti- and other TM-Containing Polyoxometalates: Role of the Metal Nature and Coordination Environment

Nadya S. Antonova; Jorge J. Carbó; Ulrich Kortz; Oxana A. Kholdeeva; Josep M. Poblet

The oxidation of alkenes by H(2)O(2) catalyzed by Ti(IV)-containing polyoxometalates (POMs) as models of Ti single-site catalysts has been investigated at DFT level and has been compared with other early transition-metal-substituted polyoxometalates. We have studied in detail the reaction mechanism of the C(2)H(4) epoxidation with H(2)O(2) mediated by two different POMs, the Ti-monosubstituted Keggin-type POM [PTi(OH)W(11)O(39)](4-) and the Ti-disubstituted sandwich-type POM [Ti(2)(OH)(2)As(2)W(19)O(67)(H(2)O)](8-). These species exhibit well-defined 6- and 5-coordinated titanium environments. For both species, the reaction proceeds through a two-step mechanism: (i) the Ti-OH groups activate H(2)O(2) with a moderate energy barrier yielding either Ti-hydroperoxo (Ti(IV)-OOH) or Ti-peroxo (Ti(IV)-OO) intermediate, and (ii) the less stable but more reactive Ti-hydroperoxo species transfers oxygen to alkene to form the epoxide, this latter step being the rate-determining step. The higher activity of the sandwich anion was attributed to the absence of dimer formation, and its higher selectivity to the larger energy cost of homolytic O-O bond breaking in the hydroperoxo intermediate. We also propose several requisites to improve the efficiency of Ti-containing catalysts, including flexible and 5-fold (or lower) coordinated Ti environments, as well as reagent-accessible Ti sites. Calculations on other TM-containing Keggin-type POMs [PTM(OH)W(11)O(39)](4-) (TM = Zr(IV), V(V), Nb(V), Mo(VI), W(VI), and Re(VII)) showed that when we move from the left to the right in the periodic table the formation of the epoxide via peroxo intermediate becomes competitive because of the higher mixing between the orbitals of the TM and the O-O unit.


Inorganic Chemistry | 2013

Cobalt Polyoxometalates as Heterogeneous Water Oxidation Catalysts

Joaquín Soriano-López; Sara Goberna-Ferrón; Laura Vigara; Jorge J. Carbó; Josep M. Poblet; José Ramón Galán-Mascarós

An insoluble salt of the water oxidation catalyst [Co9(H2O)6(OH)3(HPO4)2(PW9O34)3](16-) (Co9) has been used to modify amorphous carbon paste electrodes. The catalytic activity of this polyoxometalate is maintained in the solid state. Good catalytic rates are reached at reasonable overpotentials. As a heterogeneous catalyst, Co9 shows a remarkable long-term stability in turnover conditions. The oxygen evolution rate remains constant for hours without the appearance of any sign of fatigue or decomposition in a large pH range, including acidic conditions, where metal oxides are unstable.


Journal of the American Chemical Society | 2008

On the Origin of Alternating Bond Distortions and the Emergence of Chirality in Polyoxometalate Anions

Li‐Kai Yan; Xavier López; Jorge J. Carbó; Richard Sniatynsky; Dean C. Duncan; Josep M. Poblet

Alternating short and long bond length (ABL) distortions observed within the ring structures of molecular metal oxide anions or polyoxometalates (POMs) are reminiscent of the cooperative linear ABL distortions in perovskite d(0) metal oxides. We show herein that these distortions have a common origin: a pseudo Jahn-Teller (PJT) vibronic instability. Four POM structural types with different M(n)O(n) ring sizes are investigated herein using density functional theoretical methods: Lindqvist [M6O19](q-) (n = 4), Keggin alpha-[XM12O40](q-) (n = 6), Wells-Dawson alpha-[X2M18O62](q-) (n = 8), and Preyssler [(Na)P5W30O110](14-) (n = 10), where M = Mo(VI) and W(VI) and X = Si(IV), Ge(IV), P(V), As(V), S(VI), and Se(VI). Chirality is induced within the latter three structural types by the ABL ring distortions. The calculations confirm the PJT vibronic origin of the ABL distortions with good agreement between calculated geometries and published single-crystal X-ray diffraction data. Both theory and experiment show that the vibronic interaction and distortion magnitude increase for (1) molybdates relative to that of tungstates, (2) larger M(n)O(n) ring sizes, (3) increases in negative charge of the internalized fragments (O(2-) or XO4(q-)), and (4) d(0) versus d(n) metal oxidation states. The PJT vibronic coupling model explains these observations in terms of the energy gap between Kohn-Sham frontier molecular orbitals (MOs) concomitant with the propensity for metal-oxygen pi-bonding within the M(n)O(n) rings. The frontier MOs for the undistorted nuclear configurations are largely nonbonding pi-O(p) (occupied) and pi-M(d) (unoccupied) in character, where smaller HOMO-LUMO (H-L) gap energies lead to greater metal-oxygen pi-orbital mixing under the influence of the nuclear distortion. A reduction in pi-bond order decreases the distortion in mixed-valence POMs. Of the tungstates examined, only the Preyssler anion shows pronounced ABL ring distortions, which derive from its large ring size and concomitant small H-L gap.


Chemistry: A European Journal | 2010

Polyoxopalladates Encapsulating Yttrium and Lanthanide Ions, [XIIIPdII12(AsPh)8O32]5− (X=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)

Maria Barsukova; Natalya V. Izarova; Rosa Ngo Biboum; Bineta Keita; Louis Nadjo; N. S. Dalal; Nadya S. Antonova; Jorge J. Carbó; Josep M. Poblet; Ulrich Kortz

A series of novel yttrium- and lanthanide-containing heteropolyoxopalladates have been prepared and isolated as hydrated sodium salts, Na(5)[X(III)Pd(II)(12)(AsPh)(8)O(32)]y H(2)O (X=Y (1), Pr (2), Nd (3), Sm (4), Eu (5), Gd (6), Tb (7), Dy (8), Ho (9), Er (10), Tm (11), Yb (12), Lu (13); y=15-27). The polyanions [X(III)Pd(II)(12)(AsPh)(8)O(32)](5-) consist of a cuboid framework of twelve Pd(II) ions with eight phenylarsonate heterogroups located at the vertices and a central guest ion X. The compounds 1-13 have been prepared in a simple one-pot self-assembly reaction of Pd(CH(3)COO)(2), phenylarsonic acid and the respective salt of the element X in 0.5 M aqueous sodium acetate solution (pH 6.9), and characterized in the solid state by single-crystal X-ray diffraction, elemental and thermogravimetric (TGA) analyses, and IR spectroscopy. It was demonstrated that small, medium, and also large lanthanide ions can be incorporated in the center of the novel heteropolypalladate [X(III)Pd(II)(12)(AsPh)(8)O(32)](5-). The Ln-O bond lengths follow the expected trend decreasing from left to right in the lanthanide series. This indicates that the {Pd(II)(12)O(32)} shell can adjust to the coordination requirements of the encapsulated guest cation. Compounds 3 and 5 were selected for electrochemical studies. Their cyclic voltammetry in a lithium acetate buffer at pH 5.9 showed a Pd(0) deposition process on the glassy carbon electrode surface. Coulometry indicated that all Pd(II) centers were reduced to Pd(0). The film was stable and could be taken out of the deposition medium and characterized in pure pH 5.9 buffer. Magnetic susceptibility and EPR measurements were carried out on 5 and 6. The former was confirmed to be diamagnetic and the latter strongly paramagnetic with a S=7/2 ground state. DFT calculations for some of the polyoxometalates have been also performed.


Chemistry: A European Journal | 2012

Disclosing the Structure/Activity Correlation in Trivalent Boron‐Containing Compounds: A Tendency Map

Jessica Cid; Jorge J. Carbó; Elena Fernández

Most trivalent boron reagents are electrophiles owing to the vacancy for two electrons to fill the outer orbital of boron; however, interestingly, trivalent boron compounds can change their electrophilic character to a nucleophilic character by only changing the nature of the substituents on the boron atoms. With the help of computational tools, we have analyzed the structural- and electronic properties of boryl fragments that were either bonded to main-group metals or coordinated to transition-metals/rare-earth-metals and we have designed a map that might help to identify certain trends. This trend map will be useful for selecting an appropriate trivalent boron compound, depending on the sought reactivity.


Chemistry: A European Journal | 2014

A Clear‐Cut Example of Selective BpinBdan Activation and Precise Bdan Transfer on Boron Conjugate Addition

Jessica Cid; Jorge J. Carbó; Elena Fernández

Activating the non-symmetrical Bpin-Bdan diboron reagent with alkoxide leads to the formation of two possible adducts: MeO(-) →Bpin-Bdan or MeO(-) →Bdan-Bpin. Experimental and theoretical investigation confirms that the MeO(-) →Bpin interaction is preferred and thus selective formation of a C-Bdan bond upon reaction with an activated C=C bond.


Journal of the American Chemical Society | 2014

Aerobic carbon-carbon bond cleavage of alkenes to aldehydes catalyzed by first-row transition-metal-substituted polyoxometalates in the presence of nitrogen dioxide.

Amir Rubinstein; Pablo Jiménez-Lozanao; Jorge J. Carbó; Josep M. Poblet; Ronny Neumann

A new aerobic carbon-carbon bond cleavage reaction of linear di-substituted alkenes, to yield the corresponding aldehydes/ketones in high selectivity under mild reaction conditions, is described using copper(II)-substituted polyoxometalates, such as {α2-Cu(L)P2W17O61}(8-) or {[(Cu(L)]2WZn(ZnW9O34)2}(12-), as catalysts, where L = NO2. A biorenewable-based substrate, methyl oleate, gave methyl 8-formyloctanoate and nonanal in >90% yield. Interestingly, cylcoalkenes yield the corresponding epoxides as products. These catalysts either can be prepared by pretreatment of the aqua-coordinated polyoxometalates (L = H2O) with NO2 or are formed in situ when the reactions are carried with nitroalkanes (for example, nitroethane) as solvents or cosolvents. Nitroethane was shown to release NO2 under reaction conditions. (31)P NMR shows that the Cu-NO2-substituted polyoxometalates act as oxygen donors to the C-C double bond, yielding a Cu-NO product that is reoxidized to Cu-NO2 under reaction conditions to complete a catalytic cycle. Stoichiometric reactions and kinetic measurements using {α2-Co(NO2)P2W17O61}(8-) as oxidant and trans-stilbene derivatives as substrates point toward a reaction mechanism for C-C bond cleavage involving two molecules of {α2-Co(NO2)P2W17O61}(8-) and one molecule of trans-stilbene that is sufficiently stable at room temperature to be observed by (31)P NMR.


Inorganic Chemistry | 2012

Polyoxopalladates Encapsulating 8-Coordinated Metal Ions, [MO8PdII12L8]n− (M = Sc3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Lu3+; L = PhAsO32–, PhPO32–, SeO32–)

Maria Barsukova-Stuckart; Natalya V. Izarova; Ryan Barrett; Zhenxing Wang; Johan van Tol; Harold W. Kroto; N. S. Dalal; Pablo Jiménez-Lozano; Jorge J. Carbó; Josep M. Poblet; Marc S. von Gernler; Thomas Drewello; Pedro de Oliveira; Bineta Keita; Ulrich Kortz

A total of 16 discrete polyoxopalladates(II) [MO(8)Pd(II)(12)L(8)](n-), with a metal ion M encapsulated in a cuboid-shaped {Pd(12)O(8)L(8)} cage, have been synthesized: the phenylarsonate-capped series (1) L = PhAsO(3)(2-), M = Sc(3+) (ScPhAs), Mn(2+) (MnPhAs), Fe(3+) (FePhAs), Co(2+) (CoPhAs), Ni(2+) (NiPhAs), Cu(2+) (CuPhAs), Zn(2+) (ZnPhAs); the phenylphosphonate-capped series: (2) L = PhPO(3)(2-), M = Cu(2+) (CuPhP), Zn(2+) (ZnPhP); and the selenite-capped series (3) L = SeO(3)(2-), M = Mn(2+) (MnSe), Fe(3+) (FeSe), Co(2+) (CoSe), Ni(2+) (NiSe), Cu(2+), (CuSe), Zn(2+) (ZnSe), Lu(3+) (LuSe)). The polyanions were prepared in one-pot reactions in aqueous solution of [Pd(3)(CH(3)COO)(6)] with an appropriate salt of the metal ion M, as well as PhAsO(3)H(2), PhPO(3)H(2), and SeO(2), respectively, and then isolated as hydrated sodium salts Na(n)[MO(8)Pd(II)(12)L(8)]·yH(2)O (y = 10-37). The compounds were characterized in the solid state by IR spectroscopy, single-crystal XRD, elemental and thermogravimetric analyses. The solution stability of the diamagnetic polyanions ScPhAs, ZnPhAs, ZnPhP, ZnSe, and LuSe was confirmed by multinuclear ((77)Se, (31)P, (13)C, and (1)H) NMR spectroscopy. The polyoxopalladates ScPhAs, MnPhAs, CoPhAs, and CuPhAs were investigated by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS). Electrochemical studies on the manganese- and iron-containing derivatives demonstrated that the redox properties of the Mn(2+), Fe(3+), and Pd(2+) centers in the polyanions are strikingly influenced by the nature of the capping group. These results have subsequently been verified by density functional theory (DFT) calculations. Interestingly, electron paramagnetic resonance (EPR) measurements suggest that the coordination geometry around Mn(2+) is dynamically distorted on the EPR time scale (∼10(-11) s), whereas it appears as a static ensemble with cubic symmetry on the X-ray diffraction (XRD) time-scale (10(-15) s). The octacoordinated Cu(2+) cuboid is similarly distorted, in good agreement with DFT calculations. Interestingly, g(∥) is smaller than g(⊥), which is quite unusual, needing further theoretical development.


Chemistry: A European Journal | 2012

Catalytic Non‐Conventional trans‐Hydroboration: A Theoretical and Experimental Perspective

Jessica Cid; Jorge J. Carbó; Elena Fernández

We have studied the non-conventional trans-hydroboration reaction of alkynes both experimentally and theoretically. A catalytic system based on the in situ mixture of [{Rh(cod)Cl}(2)]/PCy(3) (cod=1,5-cyclooctadiene, Cy=cyclohexyl) has been able to activate pinacolborane and catecholborane and transfer boryl and hydride groups onto the same unhindered carbon atom of the terminal alkynes. The presence of a base (Et(3)N) favored the non-conventional trans-hydroboration over the traditional cis-hydroboration. Varying the substrate had a significant influence on the reaction, with up to 99% conversion and 94% regioselectivity observed for para-methyl-phenylacetylene. Both DFT and quantum mechanical/molecular mechanical ONIOM calculations were carried out on the [RhCl(PR(3))(2)] system. To explain the selectivity towards the (Z)-alkenylboronate we explored several alternative mechanisms to the traditional cis-hydroboration, using propyne as a model alkyne. The proposed mechanism can be divided into four stages: 1) isomerization of the alkyne into the vinylidene, 2) oxidative addition of the borane reagent, 3) vinylidene insertion into the Rh-H bond, and finally 4) reductive elimination of the C-B bond to yield the 1-alkenylboronate. Calculations indicated that the vinylidene insertion is the selectivity-determining step. This result was consistent with the observed Z selectivity when the sterically demanding phosphine groups, such as PCy(3) and PiPr(3), were introduced. Finally, we theoretically analyzed the effect of the substrate on the selectivity; we identified several factors that contribute to the preference for aryl alkynes over aliphatic alkynes for the Z isomer. The intrinsic electronic properties of aryl substituents favored the Z-pathway over the E-pathway, and the aryl groups containing electron donating substituents favored the occurrence of the vinylidene reaction channel.


Inorganic Chemistry | 2011

Ammonia activation by μ3-alkylidyne fragments supported on a titanium molecular oxide model.

Sonia Aguado-Ullate; Jorge J. Carbó; Octavio González-del Moral; Avelino Martín; Miguel Mena; Josep M. Poblet; Cristina Santamaría

Ammonolysis of the μ(3)-alkylidyne derivatives [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-CR)] [R = H (1), Me (2)] produces a trinuclear oxonitride species, [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ(3)-N)] (3), via methane or ethane elimination, respectively. During the course of the reaction, the intermediates amido μ-alkylidene [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ-CHR)(NH(2))] [(R = H (4), Me (5)] and μ-imido ethyl species [{Ti(η(5)-C(5)Me(5))(μ-O)}(3)(μ-NH)Et] (6) were characterized and/or isolated. This achievement constitutes an example of characterization of the three steps of successive activation of N-H bonds in ammonia within the same transition-metal molecular system. The N-H σ-bond activation of ammonia by the μ(3)-alkylidyne titanium species has been theoretically investigated by DFT method on [{Ti(η(5)-C(5)H(5))(μ-O)}(3)(μ(3)-CH)] model complex. The calculations complement the characterization of the intermediates, showing the multiple bond character of the terminal amido and the bridging nature of imido ligand. They also indicate that the sequential ammonia N-H bonds activation process goes successively downhill in energy and occurs via direct hydron transfer to the alkylidyne group on organometallic oxides 1 and 2. The mechanism can be divided into three stages: (i) coordination of ammonia to a titanium center, in a trans disposition with respect to the alkylidyne group, and then the isomerization to adopt the cis arrangement, allowing the direct hydron migration to the μ(3)-alkylidyne group to yield the amido μ-alkylidene complexes 4 and 5, (ii) hydron migration from the amido moiety to the alkylidene group, and finally (iii) hydron migration from the μ-imido complex to the alkyl group to afford the oxo μ(3)-nitrido titanium complex 3 with alkane elimination.

Collaboration


Dive into the Jorge J. Carbó's collaboration.

Top Co-Authors

Avatar

Josep M. Poblet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Carles Bo

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Elena Fernández

Institut de Chimie des Substances Naturelles

View shared research outputs
Top Co-Authors

Avatar

Agustí Lledós

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrich Kortz

Jacobs University Bremen

View shared research outputs
Top Co-Authors

Avatar

Oxana A. Kholdeeva

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feliu Maseras

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Jessica Cid

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge