Jorge J. Cebolla
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jorge J. Cebolla.
BMC Genetics | 2015
Javier Gervas-Arruga; Jorge J. Cebolla; Pilar Irún; Javier Pérez-López; Luis Plaza; Jose C. Roche; Jose L. Capablo; José Carlos Rodríguez-Rey; Miguel Pocovi; Pilar Giraldo
BackgroundAccumulation of galactosphingolipids is a general characteristic of Fabry disease, a lysosomal storage disorder caused by the deficient activity of α-galactosidase A encoded by the GLA gene. Although many polymorphic GLA haplotypes have been described, it is still unclear whether some of these variants are causative of disease symptoms. We report the study of an inheritance of a complex intronic haplotype (CIH) (c.-10C > T, c.369 + 990C > A, c.370-81_370-77delCAGCC, c.640-16A > G, c.1000-22C > T) within the GLA gene associated with Fabry-like symptoms and galactosphingolipid accumulation.We analysed α-Gal A activity in plasma, leukocytes and skin fibroblasts in patients, and measured accumulation of galactosphingolipids by enzymatic methods and immunofluorescence techniques. Additionally, we evaluated GLA expression using quantitative PCR, EMSA, and cDNA cloning.ResultsCIH carriers had an altered GLA expression pattern, although most of the carriers had high residual enzyme activity in plasma, leukocytes and in skin fibroblasts. Nonetheless, CIH carriers had significant galactosphingolipid accumulation in fibroblasts in comparison with controls, and also glycolipid deposits in renal tubules and glomeruli. EMSA assays indicated that the c.-10C > T variant in the promoter affected a nuclear protein binding site.ConclusionsThus, inheritance of the CIH caused an mRNA deregulation altering the GLA expression pattern, producing a tissue glycolipid storage.
PLOS ONE | 2015
Javier Gervas-Arruga; Jorge J. Cebolla; Ignacio de Blas; Mercedes Roca; Miguel Pocovi; Pilar Giraldo
Gaucher disease, the most common lysosomal storage disorder, is caused by β-glucocerebrosidase deficiency. Bone complications are the major cause of morbidity in patients with type 1 Gaucher disease (GD1). Genetic components strongly influence bone remodelling. In addition, chronic inflammation produced by Gaucher cells induces the production of several cytokines, which leads to direct changes in the bone remodelling process and can also affect the process indirectly through other immune cells. In this study, we analysed the association between bone mineral density (BMD), bone marrow burden score, and relevant genetic polymorphisms related to bone metabolism, as well as profiles of proinflammatory cytokines in a GD1 cohort. This study included 83 patients distributed according to bone status. BMD was measured with DXA and broadband ultrasound attenuation; bone marrow involvement was evaluated using MRI. We also analysed 26 SNPs located in 14 genes related to bone metabolism. To assess proinflammatory status, we analysed IL-4, IL-6, IL-7, IL-10, IL-13, MIP-1α, MIP-1β, and TNFα in plasma samples from 71 control participants and GD1 patients. SNP genotype proportions and BMD differed significantly between ESRI c.453-397T>C and VDR c.1024+283G>A variants. We also observed significant associations between GD1 genotypes and bone affectation. When patients were stratified by spleen status, we observed significant correlations between non-/splenectomized groups and Spanish MRI (S-MRI) score. Across genotype proportions of non-/splenectomized patients and S-MRI, we observed significant differences in ESRI c.453-397T>C, VDR c.-83-25988G>A, and TNFRSF11B c.9C>G polymorphisms. We observed different significant proinflammatory profiles between control participants, treatment-naïve patients, and patients on enzyme replacement therapy (ERT); between non-/splenectomized patients (between untreated and ERT-treated patients) and among those with differing GBA genotypes. The data suggest that patients with GD1 have increased susceptibility to developing bone disease owing to the coexistence of genetic variants, and that genetic background in GD1 is fundamental to regulate the impact of proinflammatory status on the development of bone disease.
Frontiers in Physiology | 2017
Aida Oliván-Viguera; Javier Lozano-Gerona; Laura López de Frutos; Jorge J. Cebolla; Pilar Irún; Edgar Abarca-Lachen; Ana Julia García-Malinis; Ángel Luis García-Otín; Yolanda Gilaberte; Pilar Giraldo; Ralf Köhler
The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K+-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca2+-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that α-linolenic acid (α-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The α-LA-rich linseed oil and γ-LA-rich borage oil at 0.5% produce channel inhibition while α-LA/γ-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, α-LA, and α-LA/γ-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression.
Clinica Chimica Acta | 2018
Laura López de Frutos; Jorge J. Cebolla; Pilar Irún; Ralf Köhler; Pilar Giraldo
BACKGROUND Erythrocyte volume regulation and membrane elasticity are essential for adaptation to osmotic and mechanical stress, and life span. Here, we evaluated whether defective cholesterol trafficking caused by the rare lysosomal storages diseases (LSDs), Niemann-Pick type C (NPC) and Lysosomal acid lipase (LAL) deficiency (LALD) impairs these properties. Moreover, we tested whether measurements of cholesterol membrane content and osmotic resistance serve as a screening test for these LSDs. METHODS Patients were genotyped for mutations in NPC1, NPC2, or LIPA genes. We measured LSD plasma biomarkers and LAL activity. Red blood cells (RBC) membrane cholesterol content was evaluated in 73 subjects. Osmotic resistance tests (ORT) were conducted in 121 blood samples from LSD suspected patients and controls. RESULTS We did not find statistically significant differences between RBC cholesterol content between subjects and controls. However, the ORT, particularly at 0.49% (w/v) hypotonic sodium chloride solution, revealed a significant higher osmotic resistance in LSDs patients than in controls. We established a cut-off value of ≤51% of haemolysis with sensibility and specificity values of 80% and 70%, respectively. CONCLUSIONS NPC and LALD do not alter cholesterol content in the RBC membrane but increase osmotic resistance. Therefore, ORT serves as screening test for the studied LSDs.
Molecular Genetics and Metabolism | 2015
Jorge J. Cebolla; Isabel De Castro-Orós; Pilar Irún; Pilar Alfonso; Laura López de Frutos; Marcio Andrade-Campos; Miguel Pocovi; Pilar Giraldo
Journal of Translational Medicine | 2017
Isabel De Castro-Orós; Pilar Irún; Jorge J. Cebolla; Victor Rodriguez-Sureda; Miguel Mallén; María Jesús Pueyo; Pilar Mozas; Carmen Domínguez; Miguel Pocovi
Molecular Genetics and Metabolism | 2018
Laura López de Frutos; Jorge J. Cebolla; Pilar Irún; Pilar Giraldo
Molecular Genetics and Metabolism | 2018
Pilar Giraldo; Laura López de Frutos; Jorge J. Cebolla; Pilar Irún; Marcio Andrade-Campos; Ralf Köehler
Molecular Genetics and Metabolism | 2018
Laura López de Frutos; Jorge J. Cebolla; Pilar Irún; Ralf Köhler; Pilar Giraldo
Molecular Genetics and Metabolism | 2017
Laura López de Frutos; Jorge J. Cebolla; Pilar Irún; Jesús Romero; María T Sagrario; Clementina del Canto; Adolfo Minguez; Pilar Giraldo