Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge L. Gamboa is active.

Publication


Featured researches published by Jorge L. Gamboa.


American Journal of Human Genetics | 2013

Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders.

Dan Zhou; Nitin Udpa; Roy Ronen; Tsering Stobdan; Junbin Liang; Otto Appenzeller; Huiwen W. Zhao; Yi Yin; Yuanping Du; Lixia Guo; Rui Cao; Yu Wang; Xin Jin; Chen Huang; Wenlong Jia; Dandan Cao; Guangwu Guo; Jorge L. Gamboa; Francisco C. Villafuerte; David Callacondo; Jin Xue; Siqi Liu; Kelly A. Frazer; Yingrui Li; Vineet Bafna; Gabriel G. Haddad

The hypoxic conditions at high altitudes present a challenge for survival, causing pressure for adaptation. Interestingly, many high-altitude denizens (particularly in the Andes) are maladapted, with a condition known as chronic mountain sickness (CMS) or Monge disease. To decode the genetic basis of this disease, we sequenced and compared the whole genomes of 20 Andean subjects (10 with CMS and 10 without). We discovered 11 regions genome-wide with significant differences in haplotype frequencies consistent with selective sweeps. In these regions, two genes (an erythropoiesis regulator, SENP1, and an oncogene, ANP32D) had a higher transcriptional response to hypoxia in individuals with CMS relative to those without. We further found that downregulating the orthologs of these genes in flies dramatically enhanced survival rates under hypoxia, demonstrating that suppression of SENP1 and ANP32D plays an essential role in hypoxia tolerance. Our study provides an unbiased framework to identify and validate the genetic basis of adaptation to high altitudes and identifies potentially targetable mechanisms for CMS treatment.


Kidney International | 2011

Combined angiotensin-converting enzyme inhibition and receptor blockade associate with increased risk of cardiovascular death in hemodialysis patients.

Kevin E. Chan; T. Alp Ikizler; Jorge L. Gamboa; Chang Yu; Raymond M. Hakim; Nancy J. Brown

To compare the relative effectiveness of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) in reducing cardiovascular mortality in chronic hemodialysis patients, we conducted an observational analysis of all patients initiated on ACEI or ARB therapy undergoing chronic hemodialysis at a large dialysis provider. Survival curves with mortality hazard ratios (HRs) were generated using the Kaplan-Meier method and Cox regression. Outcomes were compared using inverse probability of treatment weighting and propensity score matching. Over 6 years, 22,800 patients were newly initiated on an ACEI and 5828 on an ARB after at least 60 days of chronic hemodialysis. After adjustment for baseline cardiovascular risk factors, there was no significant difference in the risk of cardiovascular, all-cause, or cerebrovascular mortality in patients initiated on an ARB compared with an ACEI (HR of 0.96). A third of 28,628 patients, newly started on an ACEI or ARB, went on to another antihypertensive medication in succession. After adjustment for risk factors, 701 patients initiated on combined ACEI and ARB therapy (HR of 1.45) or 6866 patients on ACEI and non-ARB antihypertensive agent (HR of 1.27) were at increased risk of cardiovascular death compared with 1758 patients initiated on an ARB and non-ACEI antihypertensive therapy. Thus, an ARB, in combination with another antihypertensive medication (but not an ACEI), may have a beneficial effect on cardiovascular mortality. As observational studies may be confounded by indication, even when adjusted, randomized clinical trials are needed to confirm these findings.


Neuroreport | 2003

Activation of caspase-12, an endoplasmic reticulum resident caspase, after permanent focal ischemia in rat.

Graham Mouw; Jennifer Zechel; Jorge L. Gamboa; W. David Lust; Warren R. Selman; Robert A. Ratcheson

The endoplasmic reticulum (ER) is emerging as a contributory component of cell death after ischemia. Since caspase-12 has been localized to the ER and is a novel signal for apoptosis, we examined the message levels and protein expression of caspase-12 after cerebral ischemia in vivo. Animals underwent permanent middle cerebral artery occlusion (MCAO) and were sacrificed 24 h after ischemia. Protein analysis revealed a significant increase in caspase-12 and a corresponding up-regulation of caspase-12 mRNA in the ischemia group compared with that in the sham group. Immunohistochemical analysis revealed diffuse positive immunostaining of caspase-12 throughout the striatum and cerebral cortex in animals that underwent ischemia, with more intense caspase-12 immunostaining in the striatum than in the cortex after ischemia. These results demonstrate that cerebral ischemia initiates an ER-based stress response that results in the transcriptional up-regulation and corresponding increased expression of caspase-12 protein, and may provide a new area for therapeutic intervention to ameliorate outcomes following stroke.


PLOS ONE | 2008

Adaptation and Mal-Adaptation to Ambient Hypoxia; Andean, Ethiopian and Himalayan Patterns

Guoqiang Xing; Clifford Qualls; Luis Huicho; Maria River-Ch; Tsering Stobdan; Marat Slessarev; Eitan Prisman; Soji Ito; Hong Wu; Angchuk Norboo; Diskit Dolma; Moses Kunzang; Tsering Norboo; Jorge L. Gamboa; Victoria E. Claydon; Joseph A. Fisher; Guta Zenebe; Amha Gebremedhin; Roger Hainsworth; Ajay Verma; Otto Appenzeller

The study of the biology of evolution has been confined to laboratories and model organisms. However, controlled laboratory conditions are unlikely to model variations in environments that influence selection in wild populations. Thus, the study of “fitness” for survival and the genetics that influence this are best carried out in the field and in matching environments. Therefore, we studied highland populations in their native environments, to learn how they cope with ambient hypoxia. The Andeans, African highlanders and Himalayans have adapted differently to their hostile environment. Chronic mountain sickness (CMS), a loss of adaptation to altitude, is common in the Andes, occasionally found in the Himalayas; and absent from the East African altitude plateau. We compared molecular signatures (distinct patterns of gene expression) of hypoxia-related genes, in white blood cells (WBC) from Andeans with (n = 10), without CMS (n = 10) and sea-level controls from Lima (n = 20) with those obtained from CMS (n = 8) and controls (n = 5) Ladakhi subjects from the Tibetan altitude plateau. We further analyzed the expression of a subset of these genes in Ethiopian highlanders (n = 8). In all subjects, we performed the studies at their native altitude and after they were rendered normoxic. We identified a gene that predicted CMS in Andeans and Himalayans (PDP2). After achieving normoxia, WBC gene expression still distinguished Andean and Himalayan CMS subjects. Remarkably, analysis of the small subset of genes (n = 8) studied in all 3 highland populations showed normoxia induced gene expression changes in Andeans, but not in Ethiopians nor Himalayan controls. This is consistent with physiologic studies in which Ethiopians and Himalayans show a lack of responsiveness to hypoxia of the cerebral circulation and of the hypoxic ventilatory drive, and with the absence of CMS on the East African altitude plateau.


Genome Biology | 2014

Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes

Nitin Udpa; Roy Ronen; Dan Zhou; Junbin Liang; Tsering Stobdan; Otto Appenzeller; Ye Yin; Yuanping Du; Lixia Guo; Rui Cao; Yu Wang; Xin Jin; Chen Huang; Wenlong Jia; Dandan Cao; Guangwu Guo; Victoria E. Claydon; Roger Hainsworth; Jorge L. Gamboa; Mehila Zibenigus; Guta Zenebe; Jin Xue; Siqi Liu; Kelly A. Frazer; Yingrui Li; Vineet Bafna; Gabriel G. Haddad

BackgroundAlthough it has long been proposed that genetic factors contribute to adaptation to high altitude, such factors remain largely unverified. Recent advances in high-throughput sequencing have made it feasible to analyze genome-wide patterns of genetic variation in human populations. Since traditionally such studies surveyed only a small fraction of the genome, interpretation of the results was limited.ResultsWe report here the results of the first whole genome resequencing-based analysis identifying genes that likely modulate high altitude adaptation in native Ethiopians residing at 3,500 m above sea level on Bale Plateau or Chennek field in Ethiopia. Using cross-population tests of selection, we identify regions with a significant loss of diversity, indicative of a selective sweep. We focus on a 208 kbp gene-rich region on chromosome 19, which is significant in both of the Ethiopian subpopulations sampled. This region contains eight protein-coding genes and spans 135 SNPs. To elucidate its potential role in hypoxia tolerance, we experimentally tested whether individual genes from the region affect hypoxia tolerance in Drosophila. Three genes significantly impact survival rates in low oxygen: cic, an ortholog of human CIC, Hsl, an ortholog of human LIPE, and Paf-AHα, an ortholog of human PAFAH1B3.ConclusionsOur study reveals evolutionarily conserved genes that modulate hypoxia tolerance. In addition, we show that many of our results would likely be unattainable using data from exome sequencing or microarray studies. This highlights the importance of whole genome sequencing for investigating adaptation by natural selection.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Mitochondrial content and distribution changes specific to mouse diaphragm after chronic normobaric hypoxia

Jorge L. Gamboa; Francisco H. Andrade

Chronic hypoxia reduces aerobic capacity (mitochondrial content) in limb skeletal muscles, and one of the causes seems to be decreased physical activity. Diaphragm and other respiratory muscles, however, may have a different pattern of adaptation as hypoxia increases the work of breathing. Thus, we hypothesized that chronic hypoxia would not reduce mitochondrial content in mouse diaphragm. Adult male C57BL/6J mice were kept in normoxia (Fi(O(2)) = 21%, control) or normobaric hypoxia (Fi(O(2)) = 10%, hypoxia) for 1, 2, and 4 wk. Mice were then killed, and the diaphragm and gastrocnemius muscles collected for analysis. In the diaphragm, cytochrome c oxidase histochemistry showed less intense staining in the hypoxia group. The total content of subunits from the electron transport chain, pyruvate dehydrogenase kinase 1 (PDK1), and voltage-dependent anion channel 1 (VDAC1) was evaluated by Western blot. These proteins decreased by 25-30% after 4 wk of hypoxia (P < 0.05 vs. control for all comparisons), matching a comparable decrease in diaphragmatic mitochondrial volume density (control 33.6 +/- 5.5% vs. hypoxia 26.8 +/- 6.7%, P = 0.013). Mitochondrial volume density or protein content did not change in gastrocnemius after hypoxia. Hypoxia decreased the content of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgamma cofactor 1-alpha (PGC-1alpha) in diaphragm but not in gastrocnemius. PGC-1alpha mRNA levels in diaphragm were also reduced with hypoxia. BCL2/adenovirus E1B interacting protein 3 (BNIP-3) mRNA levels were upregulated after 1 and 2 wk of hypoxia in diaphragm and gastrocnemius, respectively; BNIP-3 protein content increased only in the diaphragm after 4 wk of hypoxia. Contrary to our hypothesis, these results show that chronic hypoxia decreases mitochondrial content in mouse diaphragm, despite the increase in workload. A combination of reduced mitochondrial biogenesis and increased mitophagy seems to be responsible for the decrease in mitochondrial content in the mouse diaphragm after hypoxia.


Experimental Gerontology | 2009

Age-related changes of cell death pathways in rat extraocular muscle

Colleen A. McMullen; Amy L. Ferry; Jorge L. Gamboa; Francisco H. Andrade; Esther E. Dupont-Versteegden

Changes in the structure and function of aging non-locomotor muscles remains understudied, despite their importance for daily living. Extraocular muscles (EOMs) have a high incidence of age-related mitochondrial defects possibly because of the metabolic stress resulting from their fast and constant activity. Apoptosis and autophagy (type I and II cell death, respectively) are linked to defects in mitochondrial function and contribute to sarcopenia in hind limb muscles. Therefore, we hypothesized that apoptosis and autophagy are altered with age in the EOMs. Muscles from 6-, 18-, and 30-month-old male Fisher 344-Brown Norway rats were used to investigate type I cell death, caspase-3, -8, -9, and -12 activity, and type II cell death. Apoptosis, as measured by TUNEL positive nuclei, and mono- and oligo-nucleosomal content, did not change with age. Similarly, caspase-3, -8, -9, and -12 activity was not affected by aging. By contrast, autophagy, as estimated by gene expression of Atg5 and Atg7, and protein abundance of LC3 was lower in EOMs of aged rats. Based on these data, we suggest that the decrease in autophagy with age leads to the accumulation of damaged organelles, particularly mitochondria, which results in the decrease in function observed in EOM with age.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Chronic hypoxia increases insulin-stimulated glucose uptake in mouse soleus muscle.

Jorge L. Gamboa; Mary L. Garcia-Cazarin; Francisco H. Andrade

People living at high altitude appear to have lower blood glucose levels and decreased incidence of diabetes. Faster glucose uptake and increased insulin sensitivity are likely explanations for these findings: skeletal muscle is the largest glucose sink in the body, and its adaptation to the hypoxia of altitude may influence glucose uptake and insulin sensitivity. This study tested the hypothesis that chronic normobaric hypoxia increases insulin-stimulated glucose uptake in soleus muscles and decreases plasma glucose levels. Adult male C57BL/6J mice were kept in normoxia [fraction of inspired O₂ = 21% (Control)] or normobaric hypoxia [fraction of inspired O₂ = 10% (Hypoxia)] for 4 wk. Then blood glucose and insulin levels, in vitro muscle glucose uptake, and indexes of insulin signaling were measured. Chronic hypoxia lowered blood glucose and plasma insulin [glucose: 14.3 ± 0.65 mM in Control vs. 9.9 ± 0.83 mM in Hypoxia (P < 0.001); insulin: 1.2 ± 0.2 ng/ml in Control vs. 0.7 ± 0.1 ng/ml in Hypoxia (P < 0.05)] and increased insulin sensitivity determined by homeostatic model assessment 2 [21.5 ± 3.8 in Control vs. 39.3 ± 5.7 in Hypoxia (P < 0.03)]. There was no significant difference in basal glucose uptake in vitro in soleus muscle (1.59 ± 0.24 and 1.71 ± 0.15 μmol·g⁻¹·h⁻¹ in Control and Hypoxia, respectively). However, insulin-stimulated glucose uptake was 30% higher in the soleus after 4 wk of hypoxia than Control (6.24 ± 0.23 vs. 4.87 ± 0.37 μmol·g⁻¹·h⁻¹, P < 0.02). Muscle glycogen content was not significantly different between the two groups. Levels of glucose transporters 4 and 1, phosphoinositide 3-kinase, glycogen synthase kinase 3, protein kinase B/Akt, and AMP-activated protein kinase were not affected by chronic hypoxia. Akt phosphorylation following insulin stimulation in soleus muscle was significantly (25%) higher in Hypoxia than Control (P < 0.05). Neither glycogen synthase kinase 3 nor AMP-activated protein kinase phosphorylation changed after 4 wk of hypoxia. These results demonstrate that the adaptation of skeletal muscles to chronic hypoxia includes increased insulin-stimulated glucose uptake.


Neuroscience Letters | 2001

Energetic metabolism in mouse cerebral cortex during chronic hypoxia.

Ricardo Cáceda; Jorge L. Gamboa; Jaime Boero; Carlos Monge-C; Alberto Arregui

We measured the activities of Na(+)K(+) ATPase and of enzymes of the glycolytic pathway, Krebs cycle, and the respiratory chain in cerebral cortex of mice exposed to chronic hypoxia for three weeks and compared their values with those of sea level controls. There were no differences in Na(+)K(+) ATPase activity or in the activity of glycolytic enzymes. In the Krebs cycle, a 66% increase of succinate dehydrogenase activity was found due to a lower Km. In contrast, respiratory chain cytochrome oxidase activity was reduced by 12% in mice exposed to hypoxia. This suggested that the metabolic demand would be satisfied despite the respiratory chain depression (cytochrome oxidase), probably due to anaerobic energy production within the mitochondria (succinate dehydrogenase).


Physiological Reports | 2016

Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease

Jorge L. Gamboa; Frederic T. Billings; Matthew T. Bojanowski; Laura A.A. Gilliam; Chang Yu; Baback Roshanravan; L. Jackson Roberts; Jonathan Himmelfarb; T. Alp Ikizler; Nancy J. Brown

Mitochondria abnormalities in skeletal muscle may contribute to frailty and sarcopenia, commonly present in patients with chronic kidney disease (CKD). Dysfunctional mitochondria are also a major source of oxidative stress and may contribute to cardiovascular disease in CKD. We tested the hypothesis that mitochondrial structure and function worsens with the severity of CKD. Mitochondrial volume density, mitochondrial DNA (mtDNA) copy number, BNIP3, and PGC1α protein expression were evaluated in skeletal muscle biopsies obtained from 27 subjects (17 controls and 10 with CKD stage 5 on hemodialysis). We also measured mtDNA copy number in peripheral blood mononuclear cells (PBMCs), plasma isofurans, and plasma F2‐isoprostanes in 208 subjects divided into three groups: non‐CKD (eGFR>60 mL/min), CKD stage 3–4 (eGFR 60–15 mL/min), and CKD stage 5 (on hemodialysis). Muscle biopsies from patients with CKD stage 5 revealed lower mitochondrial volume density, lower mtDNA copy number, and higher BNIP3 content than controls. mtDNA copy number in PBMCs was decreased with increasing severity of CKD: non‐CKD (6.48, 95% CI 4.49–8.46), CKD stage 3–4 (3.30, 95% CI 0.85–5.75, P = 0.048 vs. non‐CKD), and CKD stage 5 (1.93, 95% CI 0.27–3.59, P = 0.001 vs. non‐CKD). Isofurans were higher in patients with CKD stage 5 (median 59.21 pg/mL, IQR 41.76–95.36) compared to patients with non‐CKD (median 49.95 pg/mL, IQR 27.88–83.46, P = 0.001), whereas F2‐isoprostanes did not differ among groups. Severity of CKD is associated with mitochondrial dysfunction and markers of oxidative stress. Mitochondrial abnormalities, which are common in skeletal muscle from patients with CKD stage 5, may explain the muscle dysfunction associated with frailty and sarcopenia in CKD. Further studies are required to evaluate mitochondrial function in vivo in patients with different CKD stages.

Collaboration


Dive into the Jorge L. Gamboa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy J. Brown

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

T. Alp Ikizler

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chang Yu

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo Cáceda

Cayetano Heredia University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge