Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge L. Medina is active.

Publication


Featured researches published by Jorge L. Medina.


Journal of Biological Chemistry | 2004

Direct Activation of the Epithelial Na+ Channel by Phosphatidylinositol 3,4,5-Trisphosphate and Phosphatidylinositol 3,4-Bisphosphate Produced by Phosphoinositide 3-OH Kinase

Qiusheng Tong; Nikita Gamper; Jorge L. Medina; Mark S. Shapiro; James D. Stockand

The phospholipid phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is accepted to be a direct modulator of ion channel activity. The products of phosphoinositide 3-OH kinase (PI3K), PtdIns(3,4)P2 and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), in contrast, are not. We report here activation of the epithelial Na+ channel (ENaC) reconstituted in Chinese hamster ovary cells by PI3K. Insulin-like growth factor-I also activated reconstituted ENaC and increased Na+ reabsorption across renal A6 epithelial cell monolayers via PI3K. Neither IGF-I nor PI3K affected the levels of ENaC in the plasma membrane. The effects of PI3K and IGF-I on ENaC activity paralleled changes in the plasma membrane levels of the PI3K product phospholipids, PtdIns(3,4)P2/PtdIns(3,4,5)P3, as measured by evanescent field fluorescence microscopy. Both PtdIns(3,4)P2 and PtdIns(3,4,5)P3 activated ENaC in excised patches. Activation of ENaC by PI3K and its phospholipid products corresponded to changes in channel open probability. We conclude that PI3K directly modulates ENaC activity via PtdIns(3,4)P2 and PtdIns(3,4,5)P3. This represents a novel transduction pathway whereby growth factors, such as IGF-I, rapidly modulate target proteins independent of signaling elicited by kinases downstream of PI3K.


American Journal of Physiology-renal Physiology | 2008

Regulation of the epithelial Na+ channel by endothelin-1 in rat collecting duct

Vladislav Bugaj; Oleh Pochynyuk; Elena Mironova; Alain Vandewalle; Jorge L. Medina; James D. Stockand

We used patch-clamp electrophysiology to investigate regulation of the epithelial Na+ channel (ENaC) by endothelin-1 (ET-1) in isolated, split-open rat collecting ducts. ET-1 significantly decreases ENaC open probability by about threefold within 5 min. ET-1 decreases ENaC activity through basolateral membrane ETB but not ETA receptors. In rat collecting duct, we find no role for phospholipase C or protein kinase C in the rapid response of ENaC to ET-1. ET-1, although, does activate src family tyrosine kinases and their downstream MAPK1/2 effector cascade in renal principal cells. Both src kinases and MAPK1/2 signaling are necessary for ET-1-dependent decreases in ENaC open probability in the split-open collecting duct. We conclude that ET-1 in a physiologically relevant manner rapidly suppresses ENaC activity in native, mammalian principal cells. These findings may provide a potential mechanism for the natriuresis observed in vivo in response to ET-1, as well as a potential cause for the salt-sensitive hypertension found in animals with impaired endothelin signaling.


Journal of Biological Chemistry | 2004

Ras Activates the Epithelial Na+ Channel through Phosphoinositide 3-OH Kinase Signaling

Alexander Staruschenko; Pravina Patel; Qiusheng Tong; Jorge L. Medina; James D. Stockand

Aldosterone induces expression and activation of the GTP-dependent signaling switch K-Ras. This small monomeric G protein is both necessary and sufficient for activation of the epithelial Na+ channel (ENaC). The mechanism by which K-Ras enhances ENaC activity, however, is uncertain. We demonstrate here that K-Ras activates human ENaC reconstituted in Chinese hamster ovary cells in a GTP-dependent manner. K-Ras influences ENaC activity most likely by affecting open probability. Inhibition of phosphoinositide 3-OH kinase (PI3K) abolished K-Ras actions on ENaC. In contrast, inhibition of other K-Ras effector cascades, including the MAPK and Ral/Rac/Rho cascades, did not affect K-Ras actions on ENaC. Activation of ENaC by K-Ras, moreover, was sensitive to co-expression of dominant negative p85PI3K. The G12:C40 effector-specific double mutant of Ras, which preferentially activates PI3K, enhanced ENaC activity in a manner sensitive to inhibition of PI3K. Other effector-specific mutants preferentially activating MAPK and RalGDS signaling had no effect. Constitutively active PI3K activated ENaC independent of K-Ras with the effects of PI3K and K-Ras on ENaC not being additive. We conclude that K-Ras activates ENaC via the PI3K cascade.


Journal of Biological Chemistry | 2004

Rho small GTPases activate the epithelial Na+ channel

Alexander Staruschenko; Amy Nichols; Jorge L. Medina; Patricia Camacho; Nadezhda N. Zheleznova; James D. Stockand

Small G proteins in the Rho family are known to regulate diverse cellular processes, including cytoskeletal organization and cell cycling, and more recently, ion channel activity and activity of phosphatidylinositol 4-phosphate 5-kinase (PI(4)P 5-K). The present study investigates regulation of the epithelial Na+ channel (ENaC) by Rho GTPases. We demonstrate here that RhoA and Rac1 markedly increase ENaC activity. Activation by RhoA was suppressed by the C3 exoenzyme. Inhibition of the downstream RhoA effector Rho kinase, which is necessary for RhoA activation of PI(4)P 5-K, abolished ENaC activation. Similar to RhoA, overexpression of PI(4)P 5-K increased ENaC activity suggesting that production of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in response to RhoA-Rho kinase signaling stimulates ENaC. Supporting this idea, inhibition of phosphatidylinositol 4-kinase, but not the RhoA effector phosphatidylinositol 3-kinase and MAPK cascades, markedly attenuated RhoA-dependent activation of ENaC. RhoA increased ENaC activity by increasing the plasma membrane levels of this channel. We conclude that RhoA activates ENaC via Rho kinase and subsequently activates PI(4)P 5-K with concomitant increases in PI(4,5)P2 levels promoting channel insertion into the plasma membrane.


Journal of Biological Chemistry | 2006

Rapid Translocation and Insertion of the Epithelial Na+ Channel in Response to RhoA Signaling

Oleh Pochynyuk; Jorge L. Medina; Nikita Gamper; Harald Genth; James D. Stockand; Alexander Staruschenko

Activity of the epithelial Na+ channel (ENaC) is limiting for Na+ absorption across many epithelia. Consequently, ENaC is a central effector impacting systemic blood volume and pressure. Two members of the Ras superfamily of small GTPases, K-Ras and RhoA, activate ENaC. K-Ras activates ENaC via a signaling pathway involving phosphatidylinositol 3-kinase and production of phosphatidylinositol 3,4,5-trisphosphate with the phospholipid directly interacting with the channel to increase open probability. How RhoA increases ENaC activity is less clear. Here we report that RhoA and K-Ras activate ENaC through independent signaling pathways and final mechanisms of action. Activation of RhoA signaling rapidly increases the membrane levels of ENaC likely by promoting channel insertion. This process dramatically increases functional ENaC current, resulting in tight spatial-temporal control of these channels. RhoA signals to ENaC via a transduction pathway, including the downstream effectors Rho kinase and phosphatidylinositol-4-phosphate 5-kinase. Phosphatidylinositol 4,5-biphosphate produced by activated phosphatidylinositol 4-phosphate 5-kinase may play a role in targeting vesicles containing ENaC to the plasma membrane.


Journal of Biological Chemistry | 2005

Identification of a Functional Phosphatidylinositol 3,4,5-Trisphosphate Binding Site in the Epithelial Na+ Channel

Oleh Pochynyuk; Alexander Staruschenko; Qiusheng Tong; Jorge L. Medina; James D. Stockand

Membrane phospholipids, such as phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3), are signaling molecules that can directly modulate the activity of ion channels, including the epithelial Na+ channel (ENaC). Whereas PI(3,4,5)P3 directly activates ENaC, its binding site within the channel has not been identified. We identify here a region of γ-mENaC just following the second trans-membrane domain (residues 569–583) important to PI(3,4,5)P3 binding and regulation. Deletion of this track decreases activity of ENaC heterologously expressed in Chinese hamster ovary cells. K-Ras and its first effector phosphoinositide 3-OH kinase (PI3-K), as well as RhoA and its effector phosphatidylinositol 4-phosphate 5-kinase increase ENaC activity. Whereas the former, via generation of PI(3,4,5)P3, increases ENaC open probability, the latter increases activity by increasing membrane levels of the channel. Deletion of the region just distal to the second trans-membrane domain disrupted regulation by K-Ras and PI3-K but not RhoA and phosphatidylinositol 4-phosphate 5-kinase. Moreover, PI(3,4,5)P3 binds ENaC with deletion of the region following the second transmembrane domain disrupting this interaction and disrupting direct activation of the channel by PI(3,4,5)P3. Mutation analysis revealed the importance of conserved positive and negative charged residues as well as bulky amino acids within this region to modulation of ENaC by PI3-K. The current results identify the region just distal to the second trans-membrane domain within γ-mENaC as being part of a functional PI(3,4,5)P3 binding site that directly impacts ENaC activity. Phospholipid binding to this site is probably mediated by the positively charged amino acids within this track, with negatively charged and bulky residues also influencing specificity of interactions.


The Journal of General Physiology | 2007

Molecular Determinants of PI(4,5)P2 and PI(3,4,5)P3 Regulation of the Epithelial Na+ Channel

Oleh Pochynyuk; Qiusheng Tong; Jorge L. Medina; Alain Vandewalle; Alexander Staruschenko; Vladislav Bugaj; James D. Stockand

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) are physiologically important second messengers. These molecules bind effector proteins to modulate activity. Several types of ion channels, including the epithelial Na+ channel (ENaC), are phosphoinositide effectors capable of directly interacting with these signaling molecules. Little, however, is known of the regions within ENaC and other ion channels important to phosphoinositide binding and modulation. Moreover, the molecular mechanism of this regulation, in many instances, remains obscure. Here, we investigate modulation of ENaC by PI(3,4,5)P3 and PI(4,5)P2 to begin identifying the molecular determinants of this regulation. We identify intracellular regions near the inner membrane interface just following the second transmembrane domains in β- and γ- but not α-ENaC as necessary for PI(3,4,5)P2 but not PI(4,5)P2 modulation. Charge neutralization of conserved basic amino acids within these regions demonstrated that these polar residues are critical to phosphoinositide regulation. Single channel analysis, moreover, reveals that the regions just following the second transmembrane domains in β- and γ-ENaC are critical to PI(3,4,5)P3 augmentation of ENaC open probability, thus, defining mechanism. Unexpectedly, intracellular domains within the extreme N terminus of β- and γ-ENaC were identified as being critical to down-regulation of ENaC activity and Po in response to depletion of membrane PI(4,5)P2. These regions of the channel played no identifiable role in a PI(3,4,5)P3 response. Again, conserved positive-charged residues within these domains were particularly important, being necessary for exogenous PI(4,5)P2 to increase open probability. We conclude that β and γ subunits bestow phosphoinositide sensitivity to ENaC with distinct regions of the channel being critical to regulation by PI(3,4,5)P3 and PI(4,5)P2. This argues that these phosphoinositides occupy distinct ligand-binding sites within ENaC to modulate open probability.


American Journal of Respiratory Cell and Molecular Biology | 2012

Mycoplasma pneumoniae CARDS Toxin Induces Pulmonary Eosinophilic and Lymphocytic Inflammation

Jorge L. Medina; Jacqueline J. Coalson; Edward G. Brooks; Vicki T. Winter; Adriana Chaparro; Molly Principe; T. R. Kannan; Joel B. Baseman; Peter H. Dube

Mycoplasma pneumoniae causes acute and chronic lung infections in humans, leading to a variety of pulmonary and extrapulmonary sequelae. Of the airway complications of M. pneumoniae infection, M. pneumoniae-associated exacerbation of asthma and pediatric wheezing are emerging as significant sources of human morbidity. However, M. pneumoniae products capable of promoting allergic inflammation are unknown. Recently, we reported that M. pneumoniae produces an ADP-ribosylating and vacuolating toxin termed the community-acquired respiratory distress syndrome (CARDS) toxin. Here we report that naive mice exposed to a single dose of recombinant CARDS (rCARDS) toxin respond with a robust inflammatory response consistent with allergic disease. rCARDS toxin induced 30-fold increased expression of the Th-2 cytokines IL-4 and IL-13 and 70- to 80-fold increased expression of the Th-2 chemokines CCL17 and CCL22, corresponding to a mixed cellular inflammatory response comprised of a robust eosinophilia, accumulation of T cells and B cells, and mucus metaplasia. The inflammatory responses correlate temporally with toxin-dependent increases in airway hyperreactivity characterized by increases in airway restriction and decreases in lung compliance. Furthermore, CARDS toxin-mediated changes in lung function and histopathology are dependent on CD4(+) T cells. Altogether, the data suggest that rCARDS toxin is capable of inducing allergic-type inflammation in naive animals and may represent a causal factor in M. pneumoniae-associated asthma.


Journal of Biological Chemistry | 2003

A Region Directly Following the Second Transmembrane Domain in γENaC Is Required for Normal Channel Gating

Rachell E. Booth; Qiusheng Tong; Jorge L. Medina; Peter M. Snyder; Pravina Patel; James D. Stockand

We used a yeast one-hybrid complementation screen to identify regions within the cytosolic tails of the mouse α, β, and γ epithelial Na+ channel (ENaC) important to protein-protein and/or protein-lipid interactions at the plasma membrane. The cytosolic COOH terminus of αENaC contained a strongly interactive domain just distal to the second transmembrane region (TM2) between Met610 and Val632. Likewise, γENaC contained such a domain just distal to TM2 spanning Gln573–Pro600. Interactive domains were also localized within Met1–Gln54 and the last 17 residues of α- and βENaC, respectively. Confocal images of Chinese hamster ovary cells transfected with enhanced green fluorescent fusion proteins of the cytosolic tails of mENaC subunits were consistent with results in yeast. Fusion proteins of the NH2 terminus of αENaC and the COOH termini of all three subunits co-localized with a plasma membrane marker. The functional importance of the membrane interactive domain in the COOH terminus of γENaC was established with whole-cell patch clamp experiments of wild type (α, β, and γ) and mutant (α, β, and γΔQ573-P600) mENaC reconstituted in Chinese hamster ovary cells. Mutant channels had about 13% of the activity of wild type channels with 0.33 ± 0.14 versus 2.5 ± 0.80 nA of amiloridesensitive inward current at –80 mV. Single channel analysis of recombinant channels demonstrated that mutant channels had a decrease in Po with 0.16 ± 0.03 versus 0.67 ± 0.07 for wild type. Mutant γENaC associated normally with the other two subunits in co-immunoprecipitation studies and localized to the plasma membrane in membrane labeling experiments and when visualized with evanescent-field fluorescence microscopy. Similar to deletion of Gln573–Pro600, deletion of Gln573–Arg583 but not Thr584–Pro600 decreased ENaC activity. The current results demonstrate that residues within Gln573–Arg583 of γENaC are necessary for normal channel gating.


Frontiers in Physiology | 2013

Functional effects of KCNQ K+ channels in airway smooth muscle

Alexey I. Evseev; Iurii Semenov; Crystal R. Archer; Jorge L. Medina; Peter H. Dube; Mark S. Shapiro; Robert Brenner

KCNQ (Kv7) channels underlie a voltage-gated K+ current best known for control of neuronal excitability, and its inhibition by Gq/11-coupled, muscarinic signaling. Studies have indicated expression of KCNQ channels in airway smooth muscle (ASM), a tissue that is predominantly regulated by muscarinic receptor signaling. Therefore, we investigated the function of KCNQ channels in rodent ASM and their interplay with Gq/11-coupled M3 muscarinic receptors. Perforated-patch clamp of dissociated ASM cells detected a K+ current inhibited by the KCNQ antagonist, XE991, and augmented by the specific agonist, flupirtine. KCNQ channels begin to activate at voltages near resting potentials for ASM cells, and indeed XE991 depolarized resting membrane potentials. Muscarinic receptor activation inhibited KCNQ current weakly (~20%) at concentrations half-maximal for contractions. Thus, we were surprised to see that KCNQ had no affect on membrane voltage or muscle contractility following muscarinic activation. Further, M3 receptor-specific antagonist J104129 fumarate alone did not reveal KCNQ effects on muscarinic evoked depolarization or contractility. However, a role for KCNQ channels was revealed when BK-K+ channel activities are reduced. While KCNQ channels do control resting potentials, they appear to play a redundant role with BK calcium-activated K+ channels during ASM muscarinic signaling. In contrast to effect of antagonist, we observe that KCNQ agonist flupirtine caused a significant hyperpolarization and reduced contraction in vitro irrespective of muscarinic activation. Using non-invasive whole animal plethysmography, the clinically approved KCNQ agonist retigabine caused a transient reduction in indexes of airway resistance in both wild type and BK β1 knockout (KO) mice treated with the muscarinic agonist. These findings indicate that KCNQ channels can be recruited via agonists to oppose muscarinic evoked contractions and may be of therapeutic value as bronchodilators.

Collaboration


Dive into the Jorge L. Medina's collaboration.

Top Co-Authors

Avatar

James D. Stockand

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Peter H. Dube

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward G. Brooks

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jacqueline J. Coalson

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Joel B. Baseman

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Oleh Pochynyuk

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Qiusheng Tong

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

T. R. Kannan

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Adriana Chaparro

University of Texas at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge