Jorge Malouf
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jorge Malouf.
The Lancet Diabetes & Endocrinology | 2017
Henry G. Bone; R. Wagman; Maria L. Brandi; Jacques P. Brown; Roland Chapurlat; Steven R. Cummings; E. Czerwinski; Astrid Fahrleitner-Pammer; David L. Kendler; Kurt Lippuner; Jean-Yves Reginster; Christian Roux; Jorge Malouf; Michelle N Bradley; N. Daizadeh; Andrea Wang; Paula Dakin; Nicola Pannacciulli; David W. Dempster; Socrates E. Papapoulos
BACKGROUND Long-term safety and efficacy of osteoporosis treatment are important because of the chronic nature of the disease. We aimed to assess the long-term safety and efficacy of denosumab, which is widely used for the treatment of postmenopausal women with osteoporosis. METHODS In the multicentre, randomised, double-blind, placebo-controlled, phase 3 FREEDOM trial, postmenopausal women aged 60-90 years with osteoporosis were enrolled in 214 centres in North America, Europe, Latin America, and Australasia and were randomly assigned (1:1) to receive 60 mg subcutaneous denosumab or placebo every 6 months for 3 years. All participants who completed the FREEDOM trial without discontinuing treatment or missing more than one dose of investigational product were eligible to enrol in the open-label, 7-year extension, in which all participants received denosumab. The data represent up to 10 years of denosumab exposure for women who received 3 years of denosumab in FREEDOM and continued in the extension (long-term group), and up to 7 years for women who received 3 years of placebo and transitioned to denosumab in the extension (crossover group). The primary outcome was safety monitoring, comprising assessments of adverse event incidence and serious adverse event incidence, changes in safety laboratory analytes (ie, serum chemistry and haematology), and participant incidence of denosumab antibody formation. Secondary outcomes included new vertebral, hip, and non-vertebral fractures as well as bone mineral density (BMD) at the lumbar spine, total hip, femoral neck, and one-third radius. Analyses were done according to the randomised FREEDOM treatment assignments. All participants who received at least one dose of investigational product in FREEDOM or the extension were included in the combined safety analyses. All participants who enrolled in the extension with observed data were included in the efficacy analyses. The FREEDOM trial (NCT00089791) and its extension (NCT00523341) are both registered with ClinicalTrials.gov. FINDINGS Between Aug 3, 2004, and June 1, 2005, 7808 women were enrolled in the FREEDOM study. 5928 (76%) women were eligible for enrolment in the extension, and of these, 4550 (77%) were enrolled (2343 long-term, 2207 crossover) between Aug 7, 2007, and June 20, 2008. 2626 women (1343 long-term; 1283 crossover) completed the extension. The yearly exposure-adjusted participant incidence of adverse events for all individuals receiving denosumab decreased from 165·3 to 95·9 per 100 participant-years over the course of 10 years. Serious adverse event rates were generally stable over time, varying between 11·5 and 14·4 per 100 participant-years. One atypical femoral fracture occurred in each group during the extension. Seven cases of osteonecrosis of the jaw were reported in the long-term group and six cases in the crossover group. The yearly incidence of new vertebral fractures (ranging from 0·90% to 1·86%) and non-vertebral fractures (ranging from 0·84% to 2·55%) remained low during the extension, similar to rates observed in the denosumab group during the first three years of the FREEDOM study, and lower than rates projected for a virtual long-term placebo cohort. In the long-term group, BMD increased from FREEDOM baseline by 21·7% at the lumbar spine, 9·2% at total hip, 9·0% at femoral neck, and 2·7% at the one-third radius. In the crossover group, BMD increased from extension baseline by 16·5% at the lumbar spine, 7·4% at total hip, 7·1% at femoral neck, and 2·3% at one-third radius. INTERPRETATION Denosumab treatment for up to 10 years was associated with low rates of adverse events, low fracture incidence compared with that observed during the original trial, and continued increases in BMD without plateau. FUNDING Amgen.
The Journal of Clinical Endocrinology and Metabolism | 2016
Paul D. Miller; Nicola Pannacciulli; Jacques P. Brown; E. Czerwinski; Bettina Nedergaard; Michael A. Bolognese; Jorge Malouf; Henry G. Bone; Jean-Yves Reginster; A. Singer; C. Wang; R. Wagman; Steven R. Cummings
Context: Denosumab and zoledronic acid (ZOL) are parenteral treatments for patients with osteoporosis. Objective: The objective of the study was to compare the effect of transitioning from oral bisphosphonates to denosumab or ZOL on bone mineral density (BMD) and bone turnover. Design and Setting: This was an international, multicenter, randomized, double-blind trial. Participants: A total of 643 postmenopausal women with osteoporosis previously treated with oral bisphosphonates participated in the study. Interventions: Subjects were randomized 1:1 to sc denosumab 60 mg every 6 months plus iv placebo once or ZOL 5 mg iv once plus sc placebo every 6 months for 12 months. Main Outcome Measures: Changes in BMD and bone turnover markers were measured. Results: BMD change from baseline at month 12 was significantly greater with denosumab compared with ZOL at the lumbar spine (primary end point; 3.2% vs 1.1%; P < .0001), total hip (1.9% vs 0.6%; P < .0001), femoral neck (1.2% vs −0.1%; P < .0001), and one-third radius (0.6% vs 0.0%; P < .05). The median decrease from baseline was greater with denosumab than ZOL for serum C-telopeptide of type 1 collagen at all time points after day 10 and for serum procollagen type 1 N-terminal propeptide at month 1 and at all time points after month 3 (all P < .05). Median percentage changes from baseline in serum intact PTH were significantly greater at months 3 and 9 with denosumab compared with ZOL (all P < .05). Adverse events were similar between groups. Three events consistent with the definition of atypical femoral fracture were observed (two denosumab and one ZOL). Conclusions: In postmenopausal women with osteoporosis previously treated with oral bisphosphonates, denosumab was associated with greater BMD increases at all measured skeletal sites and greater inhibition of bone remodeling compared with ZOL.
The Lancet | 2017
Bente Langdahl; Cesar Libanati; Daria B. Crittenden; Michael A. Bolognese; Jacques P. Brown; N. Daizadeh; Eva Dokoupilova; Klaus Engelke; Joel S. Finkelstein; Harry K. Genant; Stefan Goemaere; Lars Hyldstrup; Esteban Jodar-Gimeno; Tony M. Keaveny; David L Kendler; Peter L. Lakatos; Judy Maddox; Jorge Malouf; Fabio E Massari; Jose Fernando Molina; Maria Ulla; Andreas Grauer
BACKGROUND Previous bisphosphonate treatment attenuates the bone-forming effect of teriparatide. We compared the effects of 12 months of romosozumab (AMG 785), a sclerostin monoclonal antibody, versus teriparatide on bone mineral density (BMD) in women with postmenopausal osteoporosis transitioning from bisphosphonate therapy. METHODS This randomised, phase 3, open-label, active-controlled study was done at 46 sites in North America, Latin America, and Europe. We enrolled women (aged ≥55 to ≤90 years) with postmenopausal osteoporosis who had taken an oral bisphosphonate for at least 3 years before screening and alendronate the year before screening; an areal BMD T score of -2·5 or lower at the total hip, femoral neck, or lumbar spine; and a history of fracture. Patients were randomly assigned (1:1) via an interactive voice response system to receive subcutaneous romosozumab (210 mg once monthly) or subcutaneous teriparatide (20 μg once daily). The primary endpoint was percentage change from baseline in areal BMD by dual-energy x-ray absorptiometry at the total hip through month 12 (mean of months 6 and 12), which used a linear mixed effects model for repeated measures and represented the mean treatment effect at months 6 and 12. All randomised patients with a baseline measurement and at least one post-baseline measurement were included in the efficacy analysis. This trial is registered with ClinicalTrials.gov, number NCT01796301. FINDINGS Between Jan 31, 2013, and April 29, 2014, 436 patients were randomly assigned to romosozumab (n=218) or teriparatide (n=218). 206 patients in the romosozumab group and 209 in the teriparatide group were included in the primary efficacy analysis. Through 12 months, the mean percentage change from baseline in total hip areal BMD was 2·6% (95% CI 2·2 to 3·0) in the romosozumab group and -0·6% (-1·0 to -0·2) in the teriparatide group; difference 3·2% (95% CI 2·7 to 3·8; p<0·0001). The frequency of adverse events was generally balanced between treatment groups. The most frequently reported adverse events were nasopharyngitis (28 [13%] of 218 in the romosozumab group vs 22 [10%] of 214 in the teriparatide group), hypercalcaemia (two [<1%] vs 22 [10%]), and arthralgia (22 [10%] vs 13 [6%]). Serious adverse events were reported in 17 (8%) patients on romosozumab and in 23 (11%) on teriparatide; none were judged treatment related. There were six (3%) patients in the romosozumab group compared with 12 (6%) in the teriparatide group with adverse events leading to investigational product withdrawal. INTERPRETATION Transition to a bone-forming agent is common practice in patients treated with bisphosphonates, such as those who fracture while on therapy. In such patients, romosozumab led to gains in hip BMD that were not observed with teriparatide. These data could inform clinical decisions for patients at high risk of fracture. FUNDING Amgen, Astellas, and UCB Pharma.
Journal of Clinical Densitometry | 2013
Jorge Malouf; Silvana DiGregorio; Luis Del Rio; Ferran Torres; Ana Marin; Jordi Farrerons; Silvia Herrera; Pere Domingo
Analysis of total tissue composition and, particularly, body fat measurements has become progressively important in the diagnosis and follow-up of patients with different clinical conditions. Dual-energy X-ray absorptiometry (DXA) fan-beam scanners are widely used to measure body composition, but the development of translational equations to be able to compare data of different scanning systems is necessary. The aim of this study was to assess the extent of agreement for regional measurements of body composition among the following 3 fan-beam DXA scanners: (1) Hologic Discovery (Hologic, Inc., Waltham, MA), (2) Lunar iDXA (GE Healthcare, Madison, WI), and (3) Lunar Prodigy Advance (GE Healthcare, Madison, WI). The study population consisted of 91 adult healthy volunteers (40 males and 51 females; mean age 48.5±14.4yr) who underwent DXA evaluation of the lumbar spine, hip, and whole body in each machine on the same day. Agreement among the 3 scanners was evaluated according to the Bland-Altman method and Lins concordance correlation coefficient. Results showed a better agreement and concordance for the Lunar iDXA scanner than for any of them with the Hologic scanner. Differences were higher for any tissue or region than for the whole tissue mass. Translational equations were developed to ensure comparability of body composition measurements obtained with each of these 3 scanners.
PLOS ONE | 2016
Eva Román; Cristina García-Galcerán; Teresa Torrades; Silvia Herrera; Ana Marin; Maite Doñate; Edilmar Alvarado-Tapias; Jorge Malouf; Laura Nácher; Ricard Serra-Grima; Carlos Guarner; Juan Córdoba; Germán Soriano
Patients with cirrhosis often have functional limitations, decreased muscle mass, and a high risk of falls. These variables could improve with exercise. The aim was to study the effects of moderate exercise on functional capacity, body composition and risk of falls in patients with cirrhosis. Twenty-three cirrhotic patients were randomized to an exercise programme (n = 14) or to a relaxation programme (n = 9). Both programmes consisted of a one-hour session 3 days a week for 12 weeks. At the beginning and end of the study, we measured functional capacity using the cardiopulmonary exercise test, evaluated body composition using anthropometry and dual energy X-ray absorptiometry, and estimated risk of falls using the Timed Up&Go test. In the exercise group, cardiopulmonary exercise test showed an increase in total effort time (p<0.001) and ventilatory anaerobic threshold time (p = 0.009). Upper thigh circumference increased and mid-arm and mid-thigh skinfold thickness decreased. Dual energy X-ray absorptiometry showed a decrease in fat body mass (-0.94 kg, 95%CI -0.48 to -1.41, p = 0.003) and an increase in lean body mass (1.05 kg, 95%CI 0.27 to 1.82, p = 0.01), lean appendicular mass (0.38 kg, 95%CI 0.06 to 0.69, p = 0.03) and lean leg mass (0.34 kg, 95%CI 0.10 to 0.57, p = 0.02). The Timed Up&Go test decreased at the end of the study compared to baseline (p = 0.02). No changes were observed in the relaxation group. We conclude that a moderate exercise programme in patients with cirrhosis improves functional capacity, increases muscle mass, and decreases body fat and the Timed Up&Go time. Trial Registration: ClinicalTrials.gov NCT01447537
Bone | 2011
Yanfei L. Ma; Fernando Marin; Jan J. Stepan; Sophia Ish-Shalom; Rüdiger Möricke; Federico Hawkins; Georgios Kapetanos; María P. de la Peña; Jörn Kekow; Guillermo Martínez; Jorge Malouf; Qing Q. Zeng; Xiaohai Wan; Robert R. Recker
The periosteum contains osteogenic cells that regulate the outer shape of bone and contribute to determine its cortical thickness, size and position. We assessed the effects of subcutaneous injections of teriparatide (TPTD, 20μg/day) or oral strontium ranelate (SrR, 2g/day) in postmenopausal women with osteoporosis on new bone formation activity at the periosteal and endosteal bone surfaces using dynamic histomorphometric measurements. Evaluable tetracycline-labeled transiliac crest bone biopsies were analyzed from 27 patients in the TPTD group, and 22 in the SrR group after six months of treatment. Measurements were conducted on the thicker and thinner cortices separately, and comparisons between the thicker, thinner and combined cortices were carried out. At the combined periosteal cortex, the mineralization surface as a percent of bone surface (MS/BS%) was greater for TPTD (mean±SE: 8.08±1.22%) than SrR (3.22±1.05%) (p<0.005). The difference in mineral apposition rate (MAR) between TPTD (0.35±0.06μm/day) and SrR (0.14±0.06μm/day) was also significant (p<0.05), while that of bone formation rate per bone surface (BFR/BS) between TPTD (0.014±0.004 mm(3)/mm(2)/year) and SrR (0.004±0.003 mm(3)/mm(2)/year) was not (p=0.057). Statistically significant differences between the two treatments were also observed for MS/BS%, BFR/BS, MAR and the double-labeled perimeter in the periosteum of the thicker, but not thinner, iliac crest cortices. The comparison between the thicker and thinner cortices of both periosteal and endosteal surfaces showed statistically significant differences for MAR and the double-labeled perimeter for TPTD treated women. There were no statistically significant differences in any bone formation dynamic measurements between the two cortices in the SrR group. In conclusion, most of the bone formation and mineralization variables were significantly higher for TPTD- than SrR-treated women at both the periosteal and endosteal combined cortices. The response to TPTD for dynamic bone formation measurements in the periosteal surface was greater for the thicker than thinner cortex, but this difference was not significant in SrR treated patients. This may reflect a greater ability of TPTD to enhance responsiveness of bone to the mechanical loading environment. These effects on bone formation may underlie the improvement in bone quality in patients with osteoporosis treated with TPTD.
Journal of Bone and Joint Surgery, American Volume | 2016
Per Aspenberg; Jorge Malouf; Umberto Tarantino; Pedro A García-Hernández; Costantino Corradini; Søren Overgaard; Jan J. Stepan; Lars C. Borris; Eric Lespessailles; Frede Frihagen; Kyriakos A. Papavasiliou; Helmut Petto; José Ramón Caeiro; Fernando Marin
BACKGROUND Osteoporosis drugs might affect fracture-healing. We therefore studied the effects of teriparatide in comparison with risedronate on recovery after pertrochanteric hip fractures. METHODS The study was a randomized, multicenter, active-controlled, 78-week trial comparing teriparatide (20 μg/day) with risedronate (35 mg/week) initiated within 2 weeks after fixation of a low-trauma pertrochanteric hip fracture (AO/OTA 31-A1 or 31-A2). The main inclusion criteria were a bone mineral density T-score of ≤-2.0 and 25-OH-vitamin D of ≥9.2 ng/mL. During the first 26 weeks, patients received study medication with oral or injectable placebo plus calcium and vitamin D in a double-blinded fashion. Secondary (Timed Up-and-Go [TUG] test, hip pain, Short Form [SF]-36 health status, and safety) and exploratory (radiographic outcomes and ability to walk) 26-week end points are reported. RESULTS Of the 224 patients who were randomized, 171 (86 teriparatide, 85 risedronate) were included in the analysis. The mean age was 77 ± 8 years, 77% were female, and 26% had a prior history of low-trauma fracture. The teriparatide group completed the TUG test in a shorter time at 6, 12, 18, and 26 weeks (differences of -5.7, -4.4, -3.1, and -3.1 seconds, respectively; p = 0.021 for the overall difference). They also reported less pain on a visual analog scale immediately after the TUG test at 12 and 18 weeks (adjusted absolute differences of 10.6 and 11.9 mm, respectively; p < 0.05). There were no significant between-group differences in the SF-36 score, Charnley hip pain score, ability to walk, or use of walking aids during follow-up. Radiographic healing at 6, 12, and 26 weeks, mechanical failure of the implant (teriparatide, 7; risedronate, 8), loss of reduction (teriparatide, 2; risedronate, 4), and nonunion (0 cases) were not significantly different. Mild hypercalcemia and hyperuricemia were more frequent with teriparatide. CONCLUSIONS Teriparatide was associated with less pain and a shorter time to complete the TUG test between 6 and 26 weeks compared with risedronate. Other fracture-recovery outcomes were similar. The results should be interpreted with caution as these were secondary end points. LEVEL OF EVIDENCE Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.
Bone | 2014
Georgios Athanasiadis; Jorge Malouf; Laura Martin-Fernandez; Marta Catalan; Jordi Casademont; José Manuel Soria
Osteoporosis is a common disorder characterized by low bone mass and microarchitectural deterioration of bone tissue, resulting in an increase in bone fragility and in susceptibility to fractures. The genetic basis of osteoporosis is complex and involves multiple genes and environmental factors. Here we introduce a family-based study of the genetics of osteoporosis - the Genetic Analysis of Osteoporosis (GAO) Project - to discover genetic variants affecting osteoporosis-related phenotypes. The GAO Project involved 11 extended families from Barcelona, Spain selected through a proband with osteoporosis (N=367). We performed spine, femur and whole body densitometry for all participants and also analyzed strength and geometrical properties of the hip. Our study focused on 23 densitometric phenotypes that we considered of high clinical relevance and four definitions of low bone mass and fracture status. Pedigree validation was carried out through microsatellite genotyping. The same microsatellites were used to interrogate our data (i) for the replication of previous linkage signals and (ii) for the potential discovery of new linkage signals. The linkage analysis identified one region marked by microsatellite D17S787 showing a strong and significant signal of linkage with femoral shaft cross-sectional moment of inertia (CSMI; LOD=3.18; p=6.5×10(-5)). The chromosomal location marked by microsatellite D17S787 includes several genes, among which two are of particular interest: COL1A1 and SOST, coding for collagen alpha-1 (I) chain and sclerostin, respectively. Follow-up association analysis resulted in only one significant result for rs4792909 from the SOST genomic region (p=0.00248). As a result, we provide strong and significant evidence from both linkage and association analyses that the SOST gene may affect the strength of the femoral shaft. Future investigations should study the relationship between bone mass formation and strength properties of the bones.
Scientific Reports | 2017
Laura De-Ugarte; Enrique Caro-Molina; Maria Rodriguez-Sanz; Miguel Angel García-Pérez; José M. Olmos; Manuel Sosa-Henríquez; Ramón Pérez-Cano; C. Gómez-Alonso; Luis Del Rio; Jesús Mateo-Agudo; José Antonio Blázquez-Cabrera; Jesús González-Macías; Javier del Pino-Montes; Manuel Munoz-Torres; Manuel Díaz-Curiel; Jorge Malouf; Antonio Cano; José Luis Pérez-Castrillón; Xavier Nogués; Natalia Garcia-Giralt; A Diez-Perez
Biogenesis and function of microRNAs can be influenced by genetic variants in the pri-miRNA sequences leading to phenotypic variability. This study aims to identify single nucleotide polymorphisms (SNPs) affecting the expression levels of bone-related mature microRNAs and thus, triggering an osteoporotic phenotype. An association analysis of SNPs located in pri-miRNA sequences with bone mineral density (BMD) was performed in the OSTEOMED2 cohort (n = 2183). Functional studies were performed for assessing the role of BMD-associated miRNAs in bone cells. Two SNPs, rs6430498 in the miR-3679 and rs12512664 in the miR-4274, were significantly associated with femoral neck BMD. Further, we measured these BMD-associated microRNAs in trabecular bone from osteoporotic hip fractures comparing to non-osteoporotic bone by qPCR. Both microRNAs were found overexpressed in fractured bone. Increased matrix mineralization was observed after miR-3679-3p inhibition in human osteoblastic cells. Finally, genotypes of rs6430498 and rs12512664 were correlated with expression levels of miR-3679 and miR-4274, respectively, in osteoblasts. In both cases, the allele that generated higher microRNA expression levels was associated with lower BMD values. In conclusion, two osteoblast-expressed microRNAs, miR-3679 and miR-4274, were associated with BMD; their overexpression could contribute to the osteoporotic phenotype. These findings open new areas for the study of bone disorders.
IEEE Transactions on Medical Imaging | 2017
Ludovic Humbert; Yves Martelli; Roger Fonolla; Martin Steghofer; Silvana Di Gregorio; Jorge Malouf; Jordi Romera; Luis Miguel del Río Barquero
The 3D distribution of the cortical and trabecular bone mass in the proximal femur is a critical component in determining fracture resistance that is not taken into account in clinical routine Dual-energy X-ray Absorptiometry (DXA) examination. In this paper, a statistical shape and appearance model together with a 3D-2D registration approach are used to model the femoral shape and bone density distribution in 3D from an anteroposterior DXA projection. A model-based algorithm is subsequently used to segment the cortex and build a 3D map of the cortical thickness and density. Measurements characterising the geometry and density distribution were computed for various regions of interest in both cortical and trabecular compartments. Models and measurements provided by the “3D-DXA” software algorithm were evaluated using a database of 157 study subjects, by comparing 3D-DXA analyses (using DXA scanners from three manufacturers) with measurements performed by Quantitative Computed Tomography (QCT). The mean point-to-surface distance between 3D-DXA and QCT femoral shapes was 0.93 mm. The mean absolute error between cortical thickness and density estimates measured by 3D-DXA and QCT was 0.33 mm and 72 mg/cm3. Correlation coefficients (R) between the 3D-DXA and QCT measurements were 0.86, 0.93, and 0.95 for the volumetric bone mineral density at the trabecular, cortical, and integral compartments respectively, and 0.91 for the mean cortical thickness. 3D-DXA provides a detailed analysis of the proximal femur, including a separate assessment of the cortical layer and trabecular macrostructure, which could potentially improve osteoporosis management while maintaining DXA as the standard routine modality.