Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge N. Artaza is active.

Publication


Featured researches published by Jorge N. Artaza.


Clinical Journal of The American Society of Nephrology | 2009

Vitamin D and the Cardiovascular System

Jorge N. Artaza; Rajnish Mehrotra; Keith C. Norris

Several epidemiologic and clinical studies have suggested that there is a strong association between hypovitaminosis D and cardiovascular disease (CVD). Hypovitaminosis D was reported as a risk factor for increased cardiovascular events among 1739 adult participants in the Framingham Offspring Study. Analysis of more than 13,000 adults in the Third National Health and Nutrition Examination Survey (NHANES III) showed that even though hypovitaminosis D is associated with an increased prevalence of CVD risk factors, its association with all-cause mortality is independent of these risk factors. Importantly, epidemiologic studies suggested that patients who had chronic kidney disease and were treated with activated vitamin D had a survival advantage when compared with those who did not receive treatment with these agents. Mechanistically, emerging data have linked vitamin D administration with improved cardiac function and reduced proteinuria, and hypovitaminosis D is associated with obesity, insulin resistance, and systemic inflammation. Preliminary studies suggested that activated vitamin D inhibits the proliferation of cardiomyoblasts by promoting cell-cycle arrest and enhances the formation of cardiomyotubes without inducing apoptosis. Activated vitamin D has also been shown to attenuate left ventricular dysfunction in animal models and humans. In summary, emerging studies suggest that hypovitaminosis D has emerged as an independent risk factor for all-cause and cardiovascular mortality, reinforcing its importance as a public health problem. There is a need to advance our understanding of the biologic pathways through which vitamin D affects cardiovascular health and to conduct prospective clinical interventions to define precisely the cardioprotective effects of nutritional vitamin D repletion.


Endocrinology | 2011

1,25(OH)2Vitamin D3 Stimulates Myogenic Differentiation by Inhibiting Cell Proliferation and Modulating the Expression of Promyogenic Growth Factors and Myostatin in C2C12 Skeletal Muscle Cells

Leah A. Garcia; Keisha K. King; Monica G. Ferrini; Keith C. Norris; Jorge N. Artaza

Skeletal muscle wasting is an important public health problem associated with aging, chronic disease, cancer, kidney dialysis, and HIV/AIDS. 1,25-Dihydroxyvitamin D (1,25-D3), the active form of vitamin D, is widely recognized for its regulation of calcium and phosphate homeostasis in relation to bone development and maintenance and for its calcemic effects on target organs, such as intestine, kidney, and parathyroid glands. Emerging evidence has shown that vitamin D administration improves muscle performance and reduces falls in vitamin D-deficient older adults. However, little is known of the underlying mechanism or the role 1,25-D3 plays in promoting myogenic differentiation at the cellular and/or molecular level. In this study, we examined the effect of 1,25-D3 on myoblast cell proliferation, progression, and differentiation into myotubes. C(2)C(12) myoblasts were treated with 1,25-D3 or placebo for 1, 3, 4, 7, and 10 d. Vitamin D receptor expression was analyzed by quantitative RT-PCR, Western blottings and immunofluorescence. Expression of muscle lineage, pro- and antimyogenic, and proliferation markers was assessed by immunocytochemistry, PCR arrays, quantitative RT-PCR, and Western blottings. Addition of 1,25-D3 to C(2)C(12) myoblasts 1) increased expression and nuclear translocation of the vitamin D receptor, 2) decreased cell proliferation, 3) decreased IGF-I expression, and 4) promoted myogenic differentiation by increasing IGF-II and follistatin expression and decreasing the expression of myostatin, the only known negative regulator of muscle mass, without changing growth differentiation factor 11 expression. This study identifies key vitamin D-related molecular pathways for muscle regulation and supports the rationale for vitamin D intervention studies in select muscle disorder conditions.


Journal of Gene Medicine | 2006

Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass

Thomas R. Magee; Jorge N. Artaza; Monica G. Ferrini; Dolores Vernet; Freddi I. Zuniga; Liliana Cantini; Suzanne Reisz-Porszasz; Jacob Rajfer; Nestor F. Gonzalez-Cadavid

Myostatin negatively regulates skeletal muscle growth. Myostatin knockout mice exhibit muscle hypertrophy and decreased interstitial fibrosis. We investigated whether a plasmid expressing a short hairpin interfering RNA (shRNA) against myostatin and transduced using electroporation would increase local skeletal muscle mass.


Journal of Cellular Physiology | 2002

Endogenous expression and localization of myostatin and its relation to myosin heavy chain distribution in C2C12 skeletal muscle cells

Jorge N. Artaza; Shalender Bhasin; Con Mallidis; Wayne E. Taylor; Kun Ma; Nestor F. Gonzalez-Cadavid

Myostatin is a negative regulator of skeletal muscle growth. We have previously reported that recombinant myostatin protein inhibits DNA and protein synthesis in C2C12 cells. Our objective was to assess if C2C12 cells express myostatin, determine its sub‐cellular localization and the developmental stage of C2C12 cells in which myostatin mRNA and protein are expressed. To study the endogenous expression of myostatin, C2C12 myoblasts were allowed to progress to myotubes, and changes in the levels of endogenous myostatin mRNA expression were determined by RT–PCR. The myostatin protein and the two major myosin heavy chain (MHC) isoforms (MHC‐I and ‐II) were determined by Western blot. Confirmation of the relative MHC expression patterns was obtained by a modified polyacrylamide gel electropheretic (PAGE) procedure. Imunofluorescence staining was employed to localize the site of myostatin expression and the relative distribution of the MHC isoforms. Co‐expression of these proteins was studied using a dual staining approach. Expression of myostatin mRNA was found in myotubes but not in myoblasts. Myostatin protein was seen in most but not all, of the nuclei of polynucleated fibers expressing MHC‐II, and myostatin was detected in the cytoplasm of myotube. The localization of myostatin protein in myotube nuclei was confirmed by Western blot of isolated nuclear and cytoplasmic fractions. Incubation of C2C12 myotubes with graded doses of dexamethasone dose‐dependently increased the intensity of nuclear myostatin immunostaining and also resulted in the appearance of cytoplasmic expression. In conclusion, myostatin was expressed mostly in C2C12 myotubes nuclei expressing MHC‐II. Its predominant nuclear localization suggests that it may play a role in transcriptional regulation. J. Cell. Physiol. 190: 170–179, 2002.


Endocrinology | 2009

Regulation of Myogenic Differentiation by Androgens: Cross Talk between Androgen Receptor/ β-Catenin and Follistatin/Transforming Growth Factor-β Signaling Pathways

Rajan Singh; Shalender Bhasin; Melissa Braga; Jorge N. Artaza; Shehla Pervin; Wayne E. Taylor; Venkatesh Krishnan; Satyesh K. Sinha; Tripathi B. Rajavashisth; Ravi Jasuja

Androgens are important regulators of body composition and promote myogenic differentiation and inhibit adipogenesis of mesenchymal, multipotent cells. Here, we investigated the mechanisms by which androgens induce myogenic differentiation of mesenchymal multipotent cells. Incubation of mesenchymal multipotent C3H 10T1/2 cells with testosterone and dihydrotestosterone promoted nuclear translocation of androgen receptor (AR)/beta-catenin complex and physical interaction of AR, beta-catenin, and T-cell factor-4 (TCF-4). Inhibition of beta-catenin by small inhibitory RNAs significantly decreased testosterone-induced stimulation of myogenic differentiation. Overexpression of TCF-4, a molecule downstream of beta-catenin in Wnt signaling cascade, in C3H 10T1/2 cells significantly up-regulated expression of myoD and myosin heavy chain II proteins and of follistatin (Fst), which binds and antagonizes native ligands of the TGF-beta/Smad pathway. Gene array analysis of C3H 10T1/2 cells treated with testosterone revealed that testosterone up-regulated the expression of Fst and modified the expression of several signaling molecules involved in the TGF-beta/Smad pathway, including Smad7. Lowering of testosterone levels in mice by orchidectomy led to a significant decrease in Fst and Smad7 expression; conversely, testosterone supplementation in castrated mice up-regulated Fst and Smad7 mRNA expression in androgen-responsive levator ani muscle. Testosterone-induced up-regulation of MyoD and myosin heavy chain II proteins in C3H 10T1/2 cells was abolished in cells simultaneously treated with anti-Fst antibody, suggesting an essential role of Fst during testosterone regulation of myogenic differentiation. In conclusion, our data suggest the involvement of AR, beta-catenin, and TCF-4 pathway during androgen action to activate a number of Wnt target genes, including Fst, and cross communication with the Smad signaling pathway.


The Journal of Steroid Biochemistry and Molecular Biology | 2010

1,25(OH)2vitamin D3 inhibits cell proliferation by promoting cell cycle arrest without inducing apoptosis and modifies cell morphology of mesenchymal multipotent cells.

Jorge N. Artaza; Fara Sirad; Monica G. Ferrini; Keith C. Norris

The vitamin D receptor (VDR) and its ligand 1,25D play an important role in regulating cell growth and cell fate. We examined the effect of 1,25D on cell morphology, cell proliferation, cell cycle progression and apoptosis on mesenchymal multipotent cells. Multipotent cells were treated with and without 1,25D in a time- and dose-dependent manner. Changes in cell morphology were evaluated by a green fluorescence fluorocrome. Cell proliferation was determined by the Formazan assay and PCNA antigen expression. The expression of genes related to the cell cycle was analyzed by DNA microarrays, RT(2)PCR arrays and western blots. Apoptosis was evaluated by TUNEL assay, and the expression of pro- and anti-apoptotic related genes by RT(2)PCR arrays and western blots. 1,25D inhibited cell proliferation, induced cell cycle arrest, and promoted accumulation of cells in G0/G1 phase without inducing apoptosis. An increase in cell size was associated with a decrease in the GTPase Rho and the atypical Rho family GTPase Rhou/Wrch-1 expression without inducing Wnt-1 expression. Survivin expression was also increased and may represent a novel 1,25D-mediated pathway regulating tissue injury and fibrosis. The data provide a mechanistic explanation for the anti-proliferative and anti-apoptotic properties of 1,25D in mesenchymal multipotent cells.


Journal of Endocrinology | 2007

Alterations in myostatin expression are associated with changes in cardiac left ventricular mass but not ejection fraction in the mouse.

Jorge N. Artaza; Suzanne Reisz-Porszasz; Joan Dow; Robert A. Kloner; James Tsao; Shalender Bhasin; Nestor F. Gonzalez-Cadavid

Myostatin (Mst) is a negative regulator of skeletal muscle in humans and animals. It is moderately expressed in the heart of sheep and cattle, increasing considerably after infarction. Genetic blockade of Mst expression increases cardiomyocyte growth. We determined whether Mst overexpression in the heart of transgenic mice reduces left ventricular size and function, and inhibits in vitro cardiomyocyte proliferation. Young transgenic mice overexpressing Mst in the heart (Mst transgenic mice (TG) under a muscle creatine kinase (MCK) promoter active in cardiac and skeletal muscle, and Mst knockout (Mst (-/-)) mice were used. Xiscan angiography revealed that the left ventricular ejection fraction did not differ between the Mst TG and the Mst (-/-) mice, when compared with their respective wild-type strains, despite the decrease in whole heart and left ventricular size in Mst TG mice, and their increase in Mst (-/-) animals. The expected changes in cardiac Mst were measured by RT-PCR and western blot. Mst and its receptor (ActRIIb) were detected by RT-PCR in rat H9c2 cardiomyocytes. Transfection of H9c2 with plasmids expressing Mst under muscle-specific creatine kinase promoter, or cytomegalovirus promoter, enhanced p21 and reduced cdk2 expression, when assessed by western blot. A decrease in cell number occurred by incubation with recombinant Mst (formazan assay), without affecting apoptosis or cardiomyocyte size. Anti-Mst antibody increased cardiomyocyte replication, whereas transfection with the Mst-expressing plasmids inhibited it. In conclusion, Mst does not affect cardiac systolic function in mice overexpressing or lacking the active protein, but it reduces cardiac mass and cardiomyocyte proliferation.


Journal of Endocrinology | 2008

Myostatin promotes a fibrotic phenotypic switch in multipotent C3H 10T1/2 cells without affecting their differentiation into myofibroblasts

Jorge N. Artaza; Rajan Singh; Monica G. Ferrini; Melissa Braga; James Tsao; Nestor F. Gonzalez-Cadavid

Tissue fibrosis, the excessive deposition of collagen/extracellular matrix combined with the reduction of the cell compartment, defines fibroproliferative diseases, a major cause of death and a public health burden. Key cellular processes in fibrosis include the generation of myofibroblasts from progenitor cells, and the activation or switch of already differentiated cells to a fibrotic synthetic phenotype. Myostatin, a negative regulator of skeletal muscle mass, is postulated to be involved in muscle fibrosis. We have examined whether myostatin affects the differentiation of a multipotent mesenchymal mouse cell line into myofibroblasts, and/or modulates the fibrotic phenotype and Smad expression of the cell population. In addition, we investigated the role of follistatin in this process. Incubation of cells with recombinant myostatin protein did not affect the proportion of myofibroblasts in the culture, but significantly upregulated the expression of fibrotic markers such as collagen and the key profibrotic factors transforming growth factor-beta1 (TGF-beta1) and plasminogen activator inhibitor (PAI-1), as well as Smad3 and 4, and the pSmad2/3. An antifibrotic process evidenced by the upregulation of follistatin, Smad7, and matrix metalloproteinase 8 accompanied these changes. Follistatin inhibited TGF-beta1 induction by myostatin. Transfection with a cDNA expressing myostatin upregulated PAI-1, whereas an shRNA against myostatin blocked this effect. In conclusion, myostatin induced a fibrotic phenotype without significantly affecting differentiation into myofibroblasts. The concurrent endogenous antifibrotic reaction confirms the view that phenotypic switches in multipotent and differentiated cells may affect the progress or reversion of fibrosis, and that myostatin pharmacological inactivation may be a novel therapeutic target against fibrosis.


The Journal of Sexual Medicine | 2011

Sildenafil Promotes Smooth Muscle Preservation and Ameliorates Fibrosis Through Modulation of Extracellular Matrix and Tissue Growth Factor Gene Expression After Bilateral Cavernosal Nerve Resection in the Rat

Fara Sirad; Su M Hlaing; Istvan Kovanecz; Jorge N. Artaza; Leah A. Garcia; Jacob Rajfer; Monica G. Ferrini

INTRODUCTION It has been shown that phosphodiesterase type 5 (PDE5) inhibitors preserve smooth muscle (SM) content and ameliorate the fibrotic degeneration normally seen in the corpora cavernosa after bilateral cavernosal nerve resection (BCNR). However, the downstream mechanisms by which these drugs protect the corpora cavernosa remain poorly understood. AIM To provide insight into the mechanism, we aimed to determine the gene expression profile of angiogenesis-related pathways within the penile tissue after BCNR with or without continuous sildenafil (SIL) treatment. METHODS Five-month-old Fisher rats were subjected to BCNR or sham operation and treated with or without SIL (20 mg/kg/BW drinking water) for 3 days or 45 days (N = 8 rats per group). Total RNAs isolated from the denuded penile shaft and prostate were subjected to reverse transcription and to angiogenesis real-time-polymerase chain reaction arrays (84 genes). Changes in protein expression of selected genes such as epiregulin (EREG) and connective tissue growth factor (CTGF) were corroborated by Western blot and immunohistochemistry. MAIN OUTCOMES MEASURES Genes modulated by BCNR and SIL treatment. RESULTS A decreased expression of genes related to SM growth factors such as EREG, platelet-derived growth factor (PDGF), extracellular matrix regulators such as metalloproteinases 3 and 9, endothelial growth factors, together with an upregulation of pro-fibrotic genes such as CTGF and transforming growth factor beta 2 were found at both time points after BCNR. SIL treatment reversed this process by upregulating endothelial and SM growth factors and downregulating pro-fibrotic factors. SIL did not affect the expression of EREG, VEGF, and PDGF in the ventral prostate of BCNR animals. CONCLUSIONS SIL treatment after BCNR activates genes related to SM preservation and downregulates genes related to fibrosis in the corpora cavernosa. These results provide a mechanistic justification for the use of SIL and other PDE5 inhibitors as protective therapy against corporal SM loss and fibrosis after radical prostatectomy.


The Journal of Steroid Biochemistry and Molecular Biology | 2013

1,25(OH)2vitamin D3 enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C2C12 skeletal muscle cells ☆

Leah A. Garcia; Monica G. Ferrini; Keith C. Norris; Jorge N. Artaza

Vitamin D is mostly recognized for its regulation of calcium homeostasis in relation to the intestine, kidney, and bone. Although clinical studies have linked vitamin D with increased muscle function and strength, little is known of its underlying molecular mechanism. We recently demonstrated that 1,25-D3 exerts a direct pro-myogenic effect on skeletal muscle cells; this has provoked our investigation of 1,25-Ds effect on angiogenesis, a vital process for new capillary development and tissue repair. In this study, we examined the mechanism by which 1,25-D3 modulates key angiogenic growth factors and angiogenic inhibitors. C(2)C(12) myoblasts were incubated with 100 nM 1,25-D3 or placebo for 1, 4 and 10 days. At the end of the respective incubation time, total RNA was isolated for PCR arrays and for qRT-PCR. Total proteins were isolated for Western blots and proteome profiler arrays. The addition of 1,25-D3 to C(2)C(12) myoblasts increased VEGFa and FGF-1: two pro-angiogenic growth factors that promote neo-vascularization and tissue regeneration, and decreased FGF-2 and TIMP-3: two myogenic and/or angiogenic inhibitors. Our previous study demonstrated that 1,25-D3 altered IGF-I/II expression, consistent with the observed changes in VEGFa and FGF-2 expression. These results extend our previous findings and demonstrate the modulation of angiogenesis which may be an additional mechanism by which 1,25-D3 promotes myogenesis. This study supports the mechanistic rationale for assessing the administration of vitamin D and/or vitamin D analogs to treat select muscle disorders and may also provide an alternative solution for therapies that directly manipulate VEGF and FGFs to promote angiogenesis.

Collaboration


Dive into the Jorge N. Artaza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shalender Bhasin

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Monica G. Ferrini

Charles R. Drew University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne E. Taylor

Charles R. Drew University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

Leah A. Garcia

Charles R. Drew University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

Rajan Singh

Charles R. Drew University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

Indrani Sinha-Hikim

Charles R. Drew University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

Melissa Braga

Charles R. Drew University of Medicine and Science

View shared research outputs
Top Co-Authors

Avatar

Su M Hlaing

Charles R. Drew University of Medicine and Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge