Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge N. Domínguez is active.

Publication


Featured researches published by Jorge N. Domínguez.


Circulation-cardiovascular Genetics | 2011

PITX2 Insufficiency Leads to Atrial Electrical and Structural Remodeling Linked to Arrhythmogenesis

Ana Chinchilla; Houria Daimi; Estefanía Lozano-Velasco; Jorge N. Domínguez; Ricardo Caballero; Eva Delpón; Juan Tamargo; Juan Cinca; Leif Hove-Madsen; Amelia Aranega; Diego Franco

Background— Pitx2 is a homeobox transcription factor that plays a pivotal role in early left/right determination during embryonic development. Pitx2 loss-of-function mouse mutants display early embryonic lethality with severe cardiac malformations, demonstrating the importance of Pitx2 during cardiogenesis. Recently, independent genome-wide association studies have provided new evidence for a putative role of PITX2 in the adult heart. These studies have independently reported several risk variants close to the PITX2 locus on chromosome 4q25 that are strongly associated with atrial fibrillation in humans. Methods and Results— We show for the first time that PITX2C expression is significantly decreased in human patients with sustained atrial fibrillation, thus providing a molecular link between PITX2 loss of function and atrial fibrillation. In addition, morphological, molecular, and electrophysiological characterization of chamber-specific Pitx2 conditional mouse mutants reveals that atrial but not ventricular chamber-specific deletion of Pitx2 results in differences in the action potential amplitude and resting membrane potential in the adult heart as well as ECG characteristics of atrioventricular block. Lack of Pitx2 in atrial myocardium impairs sodium channel and potassium channel expression, mediated in part by miRNA misexpression. Conclusions— This study thus identifies Pitx2 as an upstream transcriptional regulator of atrial electric function, the insufficiency of which results in cellular and molecular changes leading to atrial electric and structural remodeling linked to arrhythmogenesis.


Circulation Research | 2009

The Tbx2+ Primary Myocardium of the Atrioventricular Canal Forms the Atrioventricular Node and the Base of the Left Ventricle

Wim T.J. Aanhaanen; Janynke F. Brons; Jorge N. Domínguez; M. Sameer Rana; Julia Norden; Rannar Airik; Vincent Wakker; Corrie de Gier-de Vries; Nigel A. Brown; Andreas Kispert; Antoon F. M. Moorman; Vincent M. Christoffels

The primary myocardium of the embryonic heart, including the atrioventricular canal and outflow tract, is essential for septation and valve formation. In the chamber-forming heart, the expression of the T-box transcription factor Tbx2 is restricted to the primary myocardium. To gain insight into the cellular contributions of the Tbx2+ primary myocardium to the components of the definitive heart, genetic lineage tracing was performed using a novel Tbx2Cre allele. These analyses revealed that progeny of Tbx2+ cells provide an unexpectedly large contribution to the Tbx2-negative ventricles. Contrary to common assumption, we found that the embryonic left ventricle only forms the left part of the definitive ventricular septum and the apex. The atrioventricular node, but not the atrioventricular bundle, was found to derive from Tbx2+ cells. The Tbx2+ outflow tract formed the right ventricle and right part of the ventricular septum. In Tbx2-deficient embryos, the left-sided atrioventricular canal was found to prematurely differentiate to chamber myocardium and to proliferate at increased rates similar to those of chamber myocardium. As a result, the atrioventricular junction and base of the left ventricle were malformed. Together, these observations indicate that Tbx2 temporally suppresses differentiation and proliferation of primary myocardial cells. A subset of these Tbx2Cre-marked cells switch off expression of Tbx2, which allows them to differentiate into chamber myocardium, to initiate proliferation, and to provide a large contribution to the ventricles. These findings imply that errors in the development of the early atrioventricular canal may affect a much larger region than previously anticipated, including the ventricular base.


Development | 2008

Atrial myocardium derives from the posterior region of the second heart field, which acquires left-right identity as Pitx2c is expressed

Daniela Galli; Jorge N. Domínguez; Stéphane Zaffran; Andrew Munk; Nigel A. Brown; Margaret Buckingham

Splanchnic mesoderm in the region described as the second heart field (SHF) is marked by Islet1 expression in the mouse embryo. The anterior part of this region expresses a number of markers, including Fgf10, and the contribution of these cells to outflow tract and right ventricular myocardium has been established. We now show that the posterior region also has myocardial potential, giving rise specifically to differentiated cells of the atria. This conclusion is based on explant experiments using endogenous and transgenic markers and on DiI labelling, followed by embryo culture. Progenitor cells in the right or left posterior SHF contribute to the right or left common atrium, respectively. Explant experiments with transgenic embryos, in which the transgene marks the right atrium, show that atrial progenitor cells acquire right-left identity between the 4- and 6-somite stages, at the time when Pitx2c is first expressed. Manipulation of Pitx2c, by gain- and loss-of-function, shows that it represses the transgenic marker of right atrial identity. A repressive effect is also seen on the proliferation of cells in the left sinus venosus and in cultured explants from the left side of the posterior SHF. This report provides new insights into the contribution of the SHF to atrial myocardium and the effect of Pitx2c on the formation of the left atrium.


Cardiovascular Research | 2010

The sinus venosus progenitors separate and diversify from the first and second heart fields early in development

Mathilda T.M. Mommersteeg; Jorge N. Domínguez; Cornelia Wiese; Julia Norden; Corrie de Gier-de Vries; John B.E. Burch; Andreas Kispert; Nigel A. Brown; Antoon F. M. Moorman; Vincent M. Christoffels

AIMS During development, the heart tube grows by differentiation of Isl1(+)/Nkx2-5(+) progenitors to the arterial and venous pole and dorsal mesocardium. However, after the establishment of the heart tube, Tbx18(+) progenitors were proposed to form the Tbx18(+)/Nkx2-5(-) sinus venosus and proepicardium. To elucidate the relationship between these contributions, we investigated the origin of the Tbx18(+) sinus venosus progenitor population in the cardiogenic mesoderm and its spatial and temporal relation to the second heart field during murine heart development. METHODS AND RESULTS Explant culture revealed that the Tbx18(+) cell population has the potential to form Nkx2-5(-) sinus venosus myocardium. Three-dimensional reconstruction of expression patterns showed that during heart tube elongation, the Tbx18(+) progenitors remained spatially and temporally separate from the Isl1(+) second heart field, only overlapping with the Isl1(+) domain at the right lateral side of the inflow tract, where the sinus node developed. Consistently, genetic lineage analysis revealed that the Tbx18(+) descendants formed the sinus venosus myocardium, but did not contribute to the pulmonary vein myocardium that developed in the Isl1(+) second heart field. By means of DiI labelling and expression analysis, the origin of the sinus venosus progenitor population was traced to the lateral rim of splanchnic mesoderm that down-regulated Nkx2-5 expression approximately 2 days before its differentiation into sinus venosus myocardium. CONCLUSION Our data indicate that the cardiogenic mesoderm contains an additional progenitor subpopulation that contributes to the sinus venosus myocardium. After patterning of the cardiogenic mesoderm, this progenitor population remains spatially separated and genetically distinctive from the second heart field subpopulation.


Cardiovascular Research | 2001

Divergent expression of delayed rectifier K+ channel subunits during mouse heart development

Diego Franco; Sophie Demolombe; Sabina Kupershmidt; Robert Dumaine; Jorge N. Domínguez; Dan M. Roden; Charles Antzelevitch; Denis Escande; Antoon F. M. Moorman

The repolarization phase of the cardiac action potential is dependent on transmembrane K(+) currents. The slow (I(Ks)) and fast (I(Kr)) components of the delayed-rectifier cardiac K(+) current are generated by pore-forming alpha subunits KCNQ1 and KCNH2, respectively, in association with regulatory beta-subunit KCNE1, KCNE2 and perphaps KCNE3. In the present study we have investigated the distribution of transcripts encoding these five potassium channel-forming subunits during mouse heart development as well as the protein distribution of KCNQ1 and KCNH2. KCNQ1 and KCNH2 mRNAs (and protein) are first expressed at embryonic day (E) 9.5, showing comparable levels of expression within the atrial and ventricular myocardium during the embryonic and fetal stages. In contrast, the beta-subunits display a more dynamic pattern of expression during development. KCNE1 expression is first observed at E9.5 throughout the entire myocardium and progressively is confined to the ventricular myocardium. With further development (E16.5), KCNE1 expression is mainly confined to the compact ventricular myocardium. KCNE2 is first expressed at E9.5 and it is restricted already to the atrial myocardium. KCNE3 is first expressed at E8.5 throughout the myocardium and with further development, it becomes restricted to the atrial myocardium. The fact that alpha subunits are homogeneously distributed within the myocardium, whereas the beta subunits display a regionalized expression profile during cardiac development, suggest that differences in the slow and fast component of the delayed-rectifier cardiac K(+) currents between the atrial and the ventricular cardiomyocytes are mainly determined by differential beta-subunit distribution.


Circulation Research | 2012

Asymmetric Fate of the Posterior Part of the Second Heart Field Results in Unexpected Left/Right Contributions to Both Poles of the Heart

Jorge N. Domínguez; Sigolène M. Meilhac; Yvette S. Bland; Margaret Buckingham; Nigel A. Brown

Rationale: The second heart field (SHF) contains progenitors of all heart chambers, excluding the left ventricle. The SHF is patterned, and the anterior region is known to be destined to form the outflow tract and right ventricle. Objective: The aim of this study was to map the fate of the posterior SHF (pSHF). Methods and Results: We examined the contribution of pSHF cells, labeled by lipophilic dye at the 4- to 6-somite stage, to regions of the heart at 20 to 25 somites, using mouse embryo culture. Cells more cranial in the pSHF contribute to the atrioventricular canal (AVC) and atria, whereas those more caudal generate the sinus venosus, but there is intermixing of fate throughout the pSHF. Caudal pSHF contributes symmetrically to the sinus venosus, but the fate of cranial pSHF is left/right asymmetrical. Left pSHF moves to dorsal left atrium and superior AVC, whereas right pSHF contributes to right atrium, ventral left atrium, and inferior AVC. Retrospective clonal analysis shows the relationships between AVC and atria to be clonal and that right and left progenitors diverge before first and second heart lineage separation. Cranial pSHF cells also contribute to the outflow tract: proximal and distal at 4 somites, and distal only at 6 somites. All outflow tract–destined cells are intermingled with those that will contribute to inflow and AVC. Conclusions: These observations show asymmetric fate of the pSHF, resulting in unexpected left/right contributions to both poles of the heart and can be integrated into a model of the morphogenetic movement of cells during cardiac looping.


Circulation Research | 2014

Tbx1 Coordinates Addition of Posterior Second Heart Field Progenitor Cells to the Arterial and Venous Poles of the Heart

M. Sameer Rana; Magali Théveniau-Ruissy; Christopher De Bono; Karim Mesbah; Alexandre Francou; Mayyasa Rammah; Jorge N. Domínguez; Marine Roux; Brigitte Laforest; Robert H. Anderson; Timothy J. Mohun; Stéphane Zaffran; Vincent M. Christoffels; Robert G. Kelly

Rationale: Cardiac progenitor cells from the second heart field (SHF) contribute to rapid growth of the embryonic heart, giving rise to right ventricular and outflow tract (OFT) myocardium at the arterial pole of the heart, and atrial myocardium at the venous pole. Recent clonal analysis and cell-tracing experiments indicate that a common progenitor pool in the posterior region of the SHF gives rise to both OFT and atrial myocytes. The mechanisms regulating deployment of this progenitor pool remain unknown. Objective: To evaluate the role of TBX1, the major gene implicated in congenital heart defects in 22q11.2 deletion syndrome patients, in posterior SHF development. Methods and Results: Using transcriptome analysis, genetic tracing, and fluorescent dye-labeling experiments, we show that Tbx1-dependent OFT myocardium originates in Hox-expressing cells in the posterior SHF. In Tbx1 null embryos, OFT progenitor cells fail to segregate from this progenitor cell pool, leading to failure to expand the dorsal pericardial wall and altered positioning of the cardiac poles. Unexpectedly, addition of SHF cells to the venous pole of the heart is also impaired, resulting in abnormal development of the dorsal mesenchymal protrusion, and partially penetrant atrioventricular septal defects, including ostium primum defects. Conclusions: Tbx1 is required for inflow as well as OFT morphogenesis by regulating the segregation and deployment of progenitor cells in the posterior SHF. Our results provide new insights into the pathogenesis of congenital heart defects and 22q11.2 deletion syndrome phenotypes.


Cardiovascular Research | 2008

Tissue distribution and subcellular localization of the cardiac sodium channel during mouse heart development

Jorge N. Domínguez; Ángel de la Rosa; Francisco Navarro; Diego Franco; Amelia Aranega

AIMS The aim of this study was to analyse the mRNA expression levels and protein distribution of the cardiac sodium channel Scn5a/Nav1.5 during mouse cardiogenesis. METHODS AND RESULTS Scn5a mRNA levels were determined by real-time RT-PCR using embryonic hearts ranging from E9.5 to E17.5 as well as postnatal and adult hearts. In addition, Scn5a protein (Nav1.5) distribution was analysed by immunohistochemistry and confocal microscopy. Scn5a mRNA levels displayed a peak at stage E11.5, decreased during the subsequent stages and then steadily increased from E17.5 onwards, and throughout the postnatal to the adult stages. Immunohistochemistry experiments revealed comparable distribution of Nav1.5 between the different cardiac chambers at early embryonic stages. During the foetal stages, Nav1.5 showed an enhanced expression in the trabeculated myocardium and in the bundle branches. At the subcellular level, Nav1.5 and Scn1b double-immunostaining analysis is consistent with the presence of both sodium channel subunits in the T-tubule system and the intercalated discs. CONCLUSION Our results demonstrate that the cardiac sodium channel, Nav1.5, shows a dynamic expression pattern during mouse heart development, indicating that it could play an important role in the acquisition of a mature pattern of conduction and contraction during cardiogenesis.


Cardiovascular Research | 2011

MODULATION OF CONDUCTIVE ELEMENTS BY PITX2 AND THEIR IMPACT ON ATRIAL ARRHYTHMOGENESIS

Diego Franco; Ana Chinchilla; Houria Daimi; Jorge N. Domínguez; Amelia Aranega

The development of the heart is a complex process during which different cell types progressively contribute to shape a four-chambered pumping organ. Over the last decades, our understanding of the specification and transcriptional regulation of cardiac development has been greatly augmented as has our understanding of the functional bases of cardiac electrophysiology during embryogenesis. The nascent heart gradually acquires distinct cellular and functional characteristics, such as the formation of contractile structures, the development of conductive capabilities, and soon thereafter the co-ordinated conduction of the electrical impulse, in order to fulfil its functional properties. Over the last decade, we have learnt about the consequences of impairing cardiac morphogenesis, which in many cases leads to congenital heart defects; however, we are not yet aware of the consequences of impairing electrical function during cardiogenesis. The most prevalent cardiac arrhythmia is atrial fibrillation (AF), although its genetic aetiology remains rather elusive. Recent genome-wide association studies have identified several genetic variants highly associated with AF. Among them are genetic variants located on chromosome 4q25 adjacent to PITX2, a transcription factor known to play a critical role in left-right asymmetry and cardiogenesis. Here, we review new insights into the cellular and molecular links between PITX2 and AF.


Revista Espanola De Cardiologia | 2002

Regulación de la expresión génica en el miocardio durante el desarrollo cardíaco

Diego Franco; Jorge N. Domínguez; María del Pilar de Castro; Amelia Aranega

The heart is an organ with special significance in medicine and developmental biology. The development of the heart and its vessels during embryogenesis is the result of numerous and complex processes. At present, our understanding is based on decades of meticulous anatomical studies. However, the spectacular progress of modern molecular biology and developmental biology has marked the beginning of a new era in embryology. The molecular bases for cardiogenesis are just emerging. Several families of genes with restricted expression to the heart have been identified in the last years, including genes encoding for contractile proteins, ion channels as well as transcription factors involved in tissue specific gene expression. Likewise, the analyses of regulatory elements have increased our understanding of the molecular mechanisms directing gene expression. In this review, we illustrate the different patterns of gene and transgene expression in the developing myocardium. These data demonstrate that the wide molecular heterogeneity observed in the developing myocardium is not restricted to embryogenesis but it also remains in the adulthood. Therefore, such molecular diversity should be taken into account on the design of future gene therapy approaches, having thus direct clinical implications.

Collaboration


Dive into the Jorge N. Domínguez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge