Jorge P. Garcia
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jorge P. Garcia.
Future Microbiology | 2014
Francisco A. Uzal; John C. Freedman; Archana Shrestha; James R. Theoret; Jorge P. Garcia; Milena M. Awad; Vicki Adams; Robert J. Moore; Julian I. Rood; Bruce A. McClane
Clostridium perfringens uses its arsenal of >16 toxins to cause histotoxic and intestinal infections in humans and animals. It has been unclear why this bacterium produces so many different toxins, especially since many target the plasma membrane of host cells. However, it is now established that C. perfringens uses chromosomally encoded alpha toxin (a phospholipase C) and perfringolysin O (a pore-forming toxin) during histotoxic infections. In contrast, this bacterium causes intestinal disease by employing toxins encoded by mobile genetic elements, including C. perfringens enterotoxin, necrotic enteritis toxin B-like, epsilon toxin and beta toxin. Like perfringolysin O, the toxins with established roles in intestinal disease form membrane pores. However, the intestinal disease-associated toxins vary in their target specificity, when they are produced (sporulation vs vegetative growth), and in their sensitivity to intestinal proteases. Producing many toxins with diverse characteristics likely imparts virulence flexibility to C. perfringens so it can cause an array of diseases.
Microbiology and Molecular Biology Reviews | 2013
Jihong Li; Vicki Adams; Trudi L. Bannam; Kazuaki Miyamoto; Jorge P. Garcia; Francisco A. Uzal; Julian I. Rood; Bruce A. McClane
SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Kochs postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract.
Molecular Microbiology | 2012
Jorge E. Vidal; Menglin Ma; Julian Saputo; Jorge P. Garcia; Francisco A. Uzal; Bruce A. McClane
Clostridium perfringens possesses at least two functional quorum sensing (QS) systems, i.e. an Agr‐like system and a LuxS‐dependent AI‐2 system. Both of those QS systems can reportedly control in vitro toxin production by C. perfringens but their importance for virulence has not been evaluated. Therefore, the current study assessed whether these QS systems might regulate the pathogenicity of CN3685, a C. perfringens type C strain. Since type C isolates cause both haemorrhagic necrotic enteritis and fatal enterotoxemias (where toxins produced in the intestines are absorbed into the circulation to target other internal organs), the ability of isogenic agrB or luxS mutants to cause necrotizing enteritis in rabbit small intestinal loops or enterotoxemic lethality in mice was evaluated. Results obtained strongly suggest that the Agr‐like QS system, but not the LuxS‐dependent AI‐2 QS system, is required for CN3685 to cause haemorrhagic necrotizing enteritis, apparently because the Agr‐like system regulates the production of beta toxin, which is essential for causing this pathology. The Agr‐like system, but not the LuxS‐mediated AI‐2 system, was also important for CN3685 to cause fatal enterotoxemia. These results provide the first direct evidence supporting a role for any QS system in clostridial infections.
Infection and Immunity | 2013
Jorge P. Garcia; Victoria M Adams; Juliann Beingesser; Meredith Lesley Hughes; Rachael Poon; Dena Lyras; A. Hill; Bruce A. McClane; Julian I. Rood; Francisco A. Uzal
ABSTRACT Clostridium perfringens type D causes disease in sheep, goats, and other ruminants. Type D isolates produce, at minimum, alpha and epsilon (ETX) toxins, but some express up to five different toxins, raising questions about which toxins are necessary for the virulence of these bacteria. We evaluated the contribution of ETX to C. perfringens type D pathogenicity in an intraduodenal challenge model in sheep, goats, and mice using a virulent C. perfringens type D wild-type strain (WT), an isogenic ETX null mutant (etx mutant), and a strain where the etx mutation has been reversed (etx complemented). All sheep and goats, and most mice, challenged with the WT isolate developed acute clinical disease followed by death in most cases. Sheep developed various gross and/or histological changes that included edema of brain, lungs, and heart as well as hydropericardium. Goats developed various effects, including necrotizing colitis, pulmonary edema, and hydropericardium. No significant gross or histological abnormalities were observed in any mice infected with the WT strain. All sheep, goats, and mice challenged with the isogenic etx mutant remained clinically healthy for ≥24 h, and no gross or histological abnormalities were observed in those animals. Complementation of etx knockout restored virulence; most goats, sheep, and mice receiving this complemented mutant developed clinical and pathological changes similar to those observed in WT-infected animals. These results indicate that ETX is necessary for type D isolates to induce disease, supporting a key role for this toxin in type D disease pathogenesis.
Veterinary Microbiology | 2012
Francisco A. Uzal; Santiago S. Diab; Patricia C. Blanchard; Janet Moore; L. Anthenill; F. Shahriar; Jorge P. Garcia; J.G. Songer
Clostridium perfringens type C is one of the most important agents of enteric disease in newborn foals. Clostridium difficile is now recognized as an important cause of enterocolitis in horses of all ages. While infections by C. perfringens type C or C. difficile are frequently seen, we are not aware of any report describing combined infection by these two microorganisms in foals. We present here five cases of foal enterocolitis associated with C. difficile and C. perfringens type C infection. Five foals between one and seven days of age were submitted for necropsy examination to the California Animal Health and Food Safety Laboratory. The five animals had a clinical history of acute hemorrhagic diarrhea followed by death and none had received antimicrobials or been hospitalized. Postmortem examination revealed hemorrhagic and necrotizing entero-typhlo-colitis. Histologically, the mucosa of the small intestine and colon presented diffuse necrosis and hemorrhage and it was often covered by a pseudomembrane. Thrombosis was observed in submucosal and/or mucosal vessels. Immunohistochemistry of intestinal sections of all foals showed that many large bacilli in the sections were C. perfringens. C. perfringens beta toxin was detected by ELISA in intestinal content of all animals and C. difficile toxin A/B was detected in intestinal content of three animals. C. perfringens (identified as type C by PCR) was isolated from the intestinal content of three foals. C. difficile (typed as A(+)/B(+) by PCR) was isolated from the intestinal content in 3 out of the 5 cases. This report suggests a possible synergism of C. perfringens type C and C. difficile in foal enterocolitis. Because none of the foals had received antibiotic therapy, the predisposing factor, if any, for the C. difficile infection remains undetermined; it is possible that the C. perfringens infection acted as a predisposing factor for C. difficile and/or vice versa. This report also stresses the need to perform a complete diagnostic workup in all cases of foal digestive disease.
Infection and Immunity | 2014
Menglin Ma; Abhijit Gurjar; James R. Theoret; Jorge P. Garcia; Juliann Beingesser; John C. Freedman; Derek J. Fisher; Bruce A. McClane; Francisco A. Uzal
ABSTRACT The ability of Clostridium perfringens type C to cause human enteritis necroticans (EN) is attributed to beta toxin (CPB). However, many EN strains also express C. perfringens enterotoxin (CPE), suggesting that CPE could be another contributor to EN. Supporting this possibility, lysate supernatants from modified Duncan-Strong sporulation (MDS) medium cultures of three CPE-positive type C EN strains caused enteropathogenic effects in rabbit small intestinal loops, which is significant since CPE is produced only during sporulation and since C. perfringens can sporulate in the intestines. Consequently, CPE and CPB contributions to the enteropathogenic effects of MDS lysate supernatants of CPE-positive type C EN strain CN3758 were evaluated using isogenic cpb and cpe null mutants. While supernatants of wild-type CN3758 MDS lysates induced significant hemorrhagic lesions and luminal fluid accumulation, MDS lysate supernatants of the cpb and cpe mutants caused neither significant damage nor fluid accumulation. This attenuation was attributable to inactivating these toxin genes since complementing the cpe mutant or reversing the cpb mutation restored the enteropathogenic effects of MDS lysate supernatants. Confirming that both CPB and CPE are needed for the enteropathogenic effects of CN3758 MDS lysate supernatants, purified CPB and CPE at the same concentrations found in CN3758 MDS lysates also acted together synergistically in rabbit small intestinal loops; however, only higher doses of either purified toxin independently caused enteropathogenic effects. These findings provide the first evidence for potential synergistic toxin interactions during C. perfringens intestinal infections and support a possible role for CPE, as well as CPB, in some EN cases.
Veterinary Microbiology | 2015
Francisco A. Uzal; Bruce A. McClane; Jackie K. Cheung; James R. Theoret; Jorge P. Garcia; Robert J. Moore; Julian I. Rood
The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Kochs postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats.
Veterinary Microbiology | 2012
Jorge P. Garcia; J. Beingesser; D.J. Fisher; S. Sayeed; Bruce A. McClane; Horst Posthaus; Francisco A. Uzal
Clostridium perfringens type C is an important cause of enteritis and/or enterocolitis in several animal species, including pigs, sheep, goats, horses and humans. The disease is a classic enterotoxemia and the enteric lesions and associated systemic effects are thought to be caused primarily by beta toxin (CPB), one of two typing toxins produced by C. perfringens type C. This has been demonstrated recently by fulfilling molecular Kochs postulates in rabbits and mice. We present here an experimental study to fulfill these postulates in goats, a natural host of C. perfringens type C disease. Nine healthy male or female Anglo Nubian goat kids were inoculated with the virulent C. perfringens type C wild-type strain CN3685, an isogenic CPB null mutant or a strain where the cpb null mutation had been reversed. Three goats inoculated with the wild-type strain presented abdominal pain, hemorrhagic diarrhea, necrotizing enterocolitis, pulmonary edema, hydropericardium and death within 24h of inoculation. Two goats inoculated with the CPB null mutant and two goats inoculated with sterile culture media (negative controls) remained clinically healthy during 24h after inoculation and no gross or histological abnormalities were observed in the tissues of any of them. Reversal of the null mutation to partially restore CPB production also increased virulence; 2 goats inoculated with this reversed mutant presented clinical and pathological changes similar to those observed in goats inoculated with the wild-type strain, except that spontaneous death was not observed. These results indicate that CPB is required for C. perfringens type C to induce disease in goats, supporting a key role for this toxin in natural C. perfringens type C disease pathogenesis.
Infection and Immunity | 2014
Jorge P. Garcia; Jihong Li; Archana Shrestha; John C. Freedman; Juliann Beingesser; Bruce A. McClane; Francisco A. Uzal
ABSTRACT Clostridium perfringens enterotoxin causes the gastrointestinal (GI) symptoms of C. perfringens type A food poisoning and CPE-associated non-food-borne human GI diseases. It is well established that CPE induces fluid accumulation and severe tissue damage in ligated small intestinal loops of rabbits and other animals. However, a previous study had also reported that CPE binds to rabbit colonic cells yet does not significantly affect rabbit colonic loops. To the contrary, the current study determined that treatment with 50 or 100 μg/ml of CPE causes significant histologic lesions and luminal fluid accumulation in rabbit colonic loops. Interestingly, a CPE-neutralizing monoclonal antibody blocked the development of CPE-induced histologic damage but not luminal fluid accumulation in these loops. Similar luminal fluid accumulation, without significant histologic damage, also occurred after treatment of colonic loops with heat-inactivated CPE, antibody alone, or bovine serum albumin (BSA), indicating that increased osmolarity was causing or contributing to fluid accumulation in CPE-treated colonic loops. Comparative studies revealed the similar development of histologic damage and luminal fluid accumulation in both small intestinal loops and colonic loops after as little as a 1-h treatment with 50 μg/ml of CPE. Consistent with the CPE sensitivity of the small intestine and colon, Western blotting detected CPE binding and large-complex formation in both organs. In addition, Western blotting demonstrated the presence of the high-affinity CPE receptors claudin-3 and -4 in both organs of rabbits, consistent with the observed toxin binding. Collectively, these results offer support for the possible involvement of the colon in CPE-mediated GI disease.
Veterinary Pathology | 2015
Jorge P. Garcia; Federico Giannitti; John W. Finnie; Jim Manavis; Juliann Beingesser; Victoria M Adams; Julian I. Rood; Francisco A. Uzal
Clostridium perfringens type D causes enterotoxemia in sheep and goats. The disease is mediated by epsilon toxin (ETX), which affects the cerebrovascular endothelium, increasing vascular permeability and leading to cerebral edema. In the present study, we compared the distribution and severity of the cerebrovascular changes induced in lambs by C. perfringens type D strain CN1020, its isogenic etx null mutant, and the ETX-producing complemented mutant. We also applied histochemical and immunohistochemical markers to further characterize the brain lesions induced by ETX. Both ETX-producing strains induced extensive cerebrovascular damage that did not differ significantly between each other in nature, neuroanatomic distribution, or severity. By contrast, lambs inoculated with the etx mutant or sterile, nontoxic culture medium did not develop detectable brain lesions, confirming that the neuropathologic effects observed in these infections are dependent on ETX production. Lambs treated with the wild-type and complemented strains showed perivascular and mural vascular edema, as well as serum albumin extravasation, particularly severe in the cerebral white matter, midbrain, medulla oblongata, and cerebellum. Brains of animals inoculated with the ETX-producing strains showed decreased expression of glial fibrillary acidic protein and increased expression of aquaporin-4 in the end-feet processes of the astrocytes around blood vessels. Early axonal injury was demonstrated with anti–amyloid precursor protein immunohistochemistry. Perivascular accumulation of macrophages/microglia with intracytoplasmic albumin globules was also observed in these animals. This study demonstrates that ETX is responsible for the major cerebrovascular changes in C. perfringens type D–induced disease.