Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge S. Burns is active.

Publication


Featured researches published by Jorge S. Burns.


Oncogene | 2004

Adult human mesenchymal stem cell as a target for neoplastic transformation

Nedime Serakinci; Per Guldberg; Jorge S. Burns; Basem M. Abdallah; Henrik Schrødder; Thomas G. Jensen; Moustapha Kassem

The neoplastic process may involve a cancer stem cell. This concept has emerged largely from the careful analysis of tumour biopsy systems from haematological, breast and brain tumours. However, the experimental systems necessary to provide the cellular and molecular evidence to support this important concept have been lacking. We have used adult mesenchymal stem cells (hMSC) transduced with the telomerase hTERT gene to investigate the neoplastic potential of adult stem cells. The hTERT-transduced line, hMSC-TERT20 at population doubling level (PDL) 256 showed loss of contact inhibition, anchorage independence and formed tumours in 10/10 mice. hMSC-TERT4 showed loss of contact inhibition at PDL 95, but did not exhibit anchorage independence and did not form tumours in mice. Both lines had a normal karyotype but showed deletion of the Ink4a/ARF locus. At later passage, hMSC-TERT4 also acquired an activating mutation in KRAS. In hMSC-TERT20, expression of the cell cycle-associated gene, DBCCR1 was lost due to promoter hypermethylation. This epigenetic event correlated with acquisition of tumorigenicity. These data suggest that the adult hMSCs can be targets for neoplastic transformation and have implications for the development of novel anticancer therapeutics and for the use of hMSC in tissue engineering and transplantation protocols.


Stem Cells and Development | 2009

Teratoma Formation by Human Embryonic Stem Cells Is Site Dependent and Enhanced by the Presence of Matrigel

Tatyana Prokhorova; Linda Harkness; Ulrik Frandsen; Nicholas Ditzel; Henrik Daa Schrøder; Jorge S. Burns; Moustapha Kassem

When implanted into immunodeficient mice, human embryonic stem cells (hESCs) give rise to teratoma, tumor-like formations containing tissues belonging to all three germ layers. The ability to form teratoma is a sine qua non characteristic of pluripotent stem cells. However, limited data are available regarding the effects of implantation site and the methods employed for implantation on the success rate of teratoma formation. In this study, the rate of teratoma formation in immunodeficient mice was site dependent: subcutaneous (25-100%), intratesticular (60%), intramuscular (12.5%), and under the kidney capsule (100%). Co-injecting the hESCs with Matrigel increased subcutaneous teratoma formation efficiency from 25-40% to 80-100%. We did not observe site-specific differences in the teratoma composition at the histological level. However, subcutaneous teratomas were quite distinct, easy to remove, and caused minimal discomfort to the mice. Also, subcutaneous teratomas displayed larger proportion of solid tissues as opposed to cyst formation that dominated the teratomas formed at the other sites. Interestingly, a chromosomally abnormal hESCs with trisomy 20 formed teratomas where the ratio of differentiated to undifferentiated tissues was significantly decreased suggesting defective pluripotency of the cells. In conclusion, subcutaneous implantation of hESCs in presence of Matrigel appears to be the most efficient, reproducible, and the easiest approach for teratoma formation by hESCs. Also, teratoma formation can be employed to study the development defects exhibited by the chromosomally abnormal hESC lines.


Cancer Research | 2005

Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortalized Human Mesenchymal Stem Cells

Jorge S. Burns; Basem M. Abdallah; Per Guldberg; Jørgen Rygaard; Henrik Daa Schrøder; Moustapha Kassem

Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation or if the stem cell origin allowed most cells to behave as cancer stem cells. Cultures of the hMSC-TERT20 strain at population doubling 440 were highly clonogenic (94%). From 110 single-cell clones expanded by 20 population doublings, 6 underwent detailed comparison. Like the parental population, each clone had approximately 1.2 days doubling time with loss of contact inhibition. All retained 1,25-(OH)(2) vitamin D(3)-induced expression of osteoblastic markers: collagen type I, alkaline phosphatase, and osteocalcin. All shared INK4a/ARF gene locus deletion and epigenetic silencing of the DBCCR1 tumor suppressor gene. Despite in vitro commonality, only four of six clones shared the growth kinetics and 100% tumorigenicity of the parental population. In contrast, one clone consistently formed latent tumors and the other established tumors with only 30% penetrance. Changing the in vitro microenvironment to mimic in vivo growth aspects revealed concordant clonal heterogeneity. Latent tumor growth correlated with extracellular matrix entrapment of multicellular spheroids and high procollagen type III expression. Poor tumorigenicity correlated with in vitro serum dependence and high p27(Kip1) expression. Aggressive tumorigenicity correlated with good viability plus capillary morphogenesis on serum starvation and high cyclin D1 expression. Thus, hMSC-TERT20 clones represent cancer stem cells with hierarchical tumorigenicity, providing new models to explore the stem cell hypothesis for cancer.


Molecular Therapy | 2010

siRNA Nanoparticle Functionalization of Nanostructured Scaffolds Enables Controlled Multilineage Differentiation of Stem Cells

Morten Østergaard Andersen; Jens Vinge Nygaard; Jorge S. Burns; Merete K. Raarup; Jens R. Nyengaard; Cody Bünger; Flemming Besenbacher; Kenneth A. Howard; Moustapha Kassem; Jørgen Kjems

The creation of complex tissues and organs is the ultimate goal in tissue engineering. Engineered morphogenesis necessitates spatially controlled development of multiple cell types within a scaffold implant. We present a novel method to achieve this by adhering nanoparticles containing different small-interfering RNAs (siRNAs) into nanostructured scaffolds. This allows spatial retention of the RNAs within nanopores until their cellular delivery. The released siRNAs were capable of gene silencing BCL2L2 and TRIB2, in mesenchymal stem cells (MSCs), enhancing osteogenic and adipogenic differentiation, respectively. This approach for enhancing a single type of differentiation is immediately applicable to all areas of tissue engineering. Different nanoparticles localized to spatially distinct locations within a single implant allowed two different tissue types to develop in controllable areas of an implant. As a consequence of this, we predict that complex tissues and organs can be engineered by the in situ development of multiple cell types guided by spatially restricted nanoparticles.


PLOS ONE | 2011

Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

Jorge S. Burns; Malthe A Melau Kristiansen; Lars Peter Kristensen; Kenneth H. Larsen; Maria Overbeck Nielsen; Helle Christiansen; Jan Nehlin; Jens S. Andersen; Moustapha Kassem

Background Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. Methodology/Principal Findings Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. Conclusions Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature.


Advances in Biochemical Engineering \/ Biotechnology | 2012

MSC and Tumors: Homing, Differentiation, and Secretion Influence Therapeutic Potential

Naomi D’souza; Jorge S. Burns; Giulia Grisendi; Olivia Candini; Elena Veronesi; Serena Piccinno; Edwin M. Horwitz; Paolo Paolucci; Pierfranco Conte; Massimo Dominici

: Mesenchymal stromal/stem cells (MSC) are adult multipotent progenitors with fibroblast-like morphology able to differentiate into adipocytic, osteogenic, chondrogenic, and myogenic lineages. Due to these properties, MSC have been studied and introduced as therapeutics in regenerative medicine. Preliminary studies have also shown a possible involvement of MSC as precursors of cellular elements within tumor microenvironments, in particular tumor-associated fibroblasts (TAF). Among a number of different possible origins, TAF may originate from a pool of circulating progenitors from bone marrow or adipose tissue-derived MSC. There is growing evidence to corroborate that cells immunophenotypically defined as MSC are able to reside as TAF influencing the tumor microenvironment in a potentially bi-phasic and obscure manner: either promoting or inhibiting growth depending on tumor context and MSC sources. Here we focus on relationships between the tumor microenvironment, cancer cells, and MSC, analyzing their diverse ability to influence neoplastic development. Associated activities include MSC homing driven by the secretion of various mediators, differentiation towards TAF phenotypes, and reciprocal interactions with the tumor cells. These are reviewed here with the aim of understanding the biological functions of MSC that can be exploited for innovative cancer therapy.


Modern Pathology | 2008

Frequent hypermethylation of DBC1 in malignant lymphoproliferative neoplasms.

Kirsten Grønbæk; Ulrik Ralfkiaer; Christina Dahl; Christoffer Hother; Jorge S. Burns; Moustapha Kassem; Jesper Worm; Elisabeth Ralfkiaer; Lene Meldgaard Knudsen; Peter Hokland; Per Guldberg

Allelic loss at chromosome 9q31–34 is a frequent event in many lymphoproliferative malignancies. Here, we examined DBC1 at 9q33.1 as a potential target in lymphomagenesis. DBC1 is a putative tumor suppressor that has been shown to be involved in the regulation of cell growth and programmed cell death. The methylation status of the DBC1 promoter CpG island was examined by methylation-specific PCR, bisulfite sequencing, and methylation-specific melting curve analysis. DBC1 was hypermethylated in 5 of 5 B-cell-derived lymphoma cell lines, 41 of 42 diffuse large B-cell lymphomas, 24 of 24 follicular lymphomas, 5 of 5 mantle cell lymphomas, 4 of 4 small lymphocytic lymphomas, 1 of 2 lymphoplasmacytoid lymphomas, and in 12 of 12 acute lymphoblastic leukemias, but was unmethylated in 1 case of splenic marginal zone lymphoma, in 12 of 12 multiple myelomas, in 24 of 24 reactive lymph nodes, and in 12 of 12 samples of blood lymphocytes from random donors. DBC1 hypermethylation was associated with transcriptional silencing in lymphoma cell lines, and reexpression of this gene could be induced by treatment with the demethylating agent, 5-aza-2′-deoxycytidine. Our data suggest that hypermethylation of the DBC1 promoter region is a frequent event during the development of lymphoproliferative malignancies, and that DBC1 hypermethylation may serve as a marker for these cancers.


Cytotechnology | 2004

The use of hTERT-immortalized cells in tissue engineering.

Moustapha Kassem; Basem M. Abdallah; Zentao Yu; Nicholas Ditzel; Jorge S. Burns

The use of human telomerase reverse transcriptase (hTERT)-immortalized cells in tissue engineering protocols is a potentially important application of telomere biology. Several human cell types have been created that overexpress the hTERT gene with enhanced telomerase activity, extended life span and maintained or even improved functional activities. Furthermore, some studies have employed the telomerized cells in tissue engineering protocols with very good results. However, high telomerase activity allows extensive cell proliferation that may be associated with genomic instability and risk for cell transformation. Thus, safety issues should be studied carefully before using the telomerized tissues in the clinic. Alternatively, the development of conditional or intermittent telomerase activation protocols is needed.


American Journal of Pathology | 2009

Epigenetic Modulation of Cancer-Germline Antigen Gene Expression in Tumorigenic Human Mesenchymal Stem Cells: Implications for Cancer Therapy

Morten Gjerstorff; Jorge S. Burns; Ole Haagen Nielsen; Moustapha Kassem; Henrik J. Ditzel

Cancer-germline antigens are promising targets for cancer immunotherapy, but whether such therapies will also eliminate the primary tumor stem cell population remains undetermined. We previously showed that long-term cultures of telomerized adult human bone marrow mesenchymal stem cells can spontaneously evolve into tumor-initiating, mesenchymal stem cells (hMSC-TERT20), which have characteristics of clinical sarcoma cells. In this study, we used the hMSC-TERT20 tumor stem cell model to investigate the potential of cancer-germline antigens to serve as tumor stem cell targets. We found that tumorigenic transformation of hMSC-TERT20 cells induced the expression of members of several cancer-germline antigen gene families (ie, GAGE, MAGE-A, and XAGE-1), with promoter hypomethylation and histone acetylation of the corresponding genes. Both in vitro cultures and tumor xenografts derived from tumorigenic hMSC-TERT20 single cell subclones exhibited heterogeneous expression of both GAGE and MAGE-A proteins, and similar patterns of expression were observed in clinical sarcomas. Importantly, histone deacetylase and DNA methyltransferase inhibitors were able to induce more ubiquitous expression levels of cancer-germline antigens in hMSC-TERT20 cells, while their expression levels in primary human mesenchymal stem cells remained unaffected. The expression pattern of cancer-germline antigens in tumorigenic mesenchymal stem cells and sarcomas, plus their susceptibility to enhancement by epigenetic modulators, makes them promising targets for immunotherapeutic approaches to cancer treatment.


PLOS ONE | 2010

Insulin Resistance Is Not Conserved in Myotubes Established from Women with PCOS

Mette Brandt Eriksen; Ann Dorte Pørneki; Vibe Skov; Jorge S. Burns; Henning Beck-Nielsen; Dorte Glintborg; Michael Gaster

Background Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among premenopausal women, who often develop insulin resistance. We tested the hypothesis that insulin resistance in skeletal muscle of patients with polycystic ovary syndrome (PCOS) is an intrinsic defect, by investigating the metabolic characteristics and gene expression of in vitro differentiated myotubes established from well characterized PCOS subjects. Methods Using radiotracer techniques, RT-PCR and enzyme kinetic analysis we examined myotubes established from PCOS subjects with or without pioglitazone treatment, versus healthy control subjects who had been extensively metabolically characterized in vivo. Results Myotubes established from PCOS and matched control subjects comprehensively expressed all insulin-sensitive biomarkers; glucose uptake and oxidation, glycogen synthesis and lipid uptake. There were no significant differences between groups either at baseline or during acute insulin stimulation, although in vivo skeletal muscle was insulin resistant. In particular, we found no evidence for defects in insulin-stimulated glycogen synthase activity between groups. Myotubes established from PCOS patients with or without pioglitazone treatment also showed no significant differences between groups, neither at baseline nor during acute insulin stimulation, although in vivo pioglitazone treatment significantly improved insulin sensitivity. Consistently, the myotube cultures failed to show differences in mRNA levels of genes previously demonstrated to differ in PCOS patients with or without pioglitazone treatment (PLEK, SLC22A16, and TTBK). Conclusion These results suggest that the mechanisms governing insulin resistance in skeletal muscle of PCOS patients in vivo are not primary, but rather adaptive. Trial Registration ClinicalTrials.gov NCT00145340

Collaboration


Dive into the Jorge S. Burns's collaboration.

Top Co-Authors

Avatar

Moustapha Kassem

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Basem M. Abdallah

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Massimo Dominici

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elena Veronesi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivia Candini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Henrik J. Ditzel

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Kenneth H. Larsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Linda Harkness

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Morten Gjerstorff

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge