Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorge Samanamud is active.

Publication


Featured researches published by Jorge Samanamud.


Proceedings of the National Academy of Sciences of the United States of America | 2014

MRI-localized biopsies reveal subtype-specific differences in molecular and cellular composition at the margins of glioblastoma.

Brian J. Gill; David Pisapia; Hani R. Malone; Hannah Goldstein; Liang Lei; Adam M. Sonabend; Jonathan Yun; Jorge Samanamud; Jennifer S. Sims; Matei Banu; Athanassios Dovas; Andrew F. Teich; Sameer A. Sheth; Guy M. McKhann; Michael B. Sisti; Jeffrey N. Bruce; Peter A. Sims; Peter Canoll

Significance Molecular analysis of surgically resected glioblastomas (GBM) samples has uncovered phenotypically and clinically distinct tumor subtypes. However, little is known about the molecular features of the glioma margins that are left behind after surgery. To address this key issue, we performed RNA-sequencing (RNA-seq) and histological analysis on MRI-guided biopsies from the contrast-enhancing core and nonenhancing margins of GBM. Computational deconvolution of the RNA-seq data revealed that cellular composition, including nonneoplastic cells, is a major determinant of the expression patterns at the margins of GBM. The different GBM subtypes show distinct expression patterns that relate the contrast enhancing centers to the nonenhancing margins of tumors. Understanding these patterns may provide a means to infer the molecular and cellular features of residual disease. Glioblastomas (GBMs) diffusely infiltrate the brain, making complete removal by surgical resection impossible. The mixture of neoplastic and nonneoplastic cells that remain after surgery form the biological context for adjuvant therapeutic intervention and recurrence. We performed RNA-sequencing (RNA-seq) and histological analysis on radiographically guided biopsies taken from different regions of GBM and showed that the tissue contained within the contrast-enhancing (CE) core of tumors have different cellular and molecular compositions compared with tissue from the nonenhancing (NE) margins of tumors. Comparisons with the The Cancer Genome Atlas dataset showed that the samples from CE regions resembled the proneural, classical, or mesenchymal subtypes of GBM, whereas the samples from the NE regions predominantly resembled the neural subtype. Computational deconvolution of the RNA-seq data revealed that contributions from nonneoplastic brain cells significantly influence the expression pattern in the NE samples. Gene ontology analysis showed that the cell type-specific expression patterns were functionally distinct and highly enriched in genes associated with the corresponding cell phenotypes. Comparing the RNA-seq data from the GBM samples to that of nonneoplastic brain revealed that the differentially expressed genes are distributed across multiple cell types. Notably, the patterns of cell type-specific alterations varied between the different GBM subtypes: the NE regions of proneural tumors were enriched in oligodendrocyte progenitor genes, whereas the NE regions of mesenchymal GBM were enriched in astrocytic and microglial genes. These subtype-specific patterns provide new insights into molecular and cellular composition of the infiltrative margins of GBM.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire

Jennifer S. Sims; Boris Grinshpun; Yaping Feng; Timothy H. Ung; Justin A. Neira; Jorge Samanamud; Peter Canoll; Yufeng Shen; Peter A. Sims; Jeffrey N. Bruce

Significance High-throughput sequencing of T-cell receptor (TCR) repertoires provides a high-dimensional biomarker for monitoring the immune system. We applied this approach, measuring the extent to which the TCR repertoires of T-cell populations infiltrating malignant brain tumors diverge from their peripheral blood. Our analytical strategy separates the statistical properties of the repertoire derived from VJ cassette combination usage from the VJ-independent contribution that reflects the antigen-binding component of the receptor. We discovered a TCR signature strongly inversely correlated with the VJ-independent divergence between the peripheral and tissue-infiltrating repertoires of these patients. Importantly, this signature is detectable in peripheral blood and could serve as a means of noninvasively monitoring immune response in patients. Although immune signaling has emerged as a defining feature of the glioma microenvironment, how the underlying structure of the glioma-infiltrating T-cell population differs from that of the blood from which it originates has been difficult to measure directly in patients. High-throughput sequencing of T-cell receptor (TCR) repertoires (TCRseq) provides a population-wide statistical description of how T cells respond to disease. We have defined immunophenotypes of whole repertoires based on TCRseq of the α- and β-chains from glioma tissue, nonneoplastic brain tissue, and peripheral blood from patients. Using information theory, we partitioned the diversity of these TCR repertoires into that from the distribution of VJ cassette combinations and diversity due to VJ-independent factors, such as selection due to antigen binding. Tumor-infiltrating lymphocytes (TILs) possessed higher VJ-independent diversity than nonneoplastic tissue, stratifying patients according to tumor grade. We found that the VJ-independent components of tumor-associated repertoires diverge more from their corresponding peripheral repertoires than T-cell populations in nonneoplastic brain tissue, particularly for low-grade gliomas. Finally, we identified a “signature” set of TCRs whose use in peripheral blood is associated with patients exhibiting low TIL divergence and is depleted in patients with highly divergent TIL repertoires. This signature is detectable in peripheral blood, and therefore accessible noninvasively. We anticipate that these immunophenotypes will be foundational to monitoring and predicting response to antiglioma vaccines and immunotherapy.


Journal of Neurosurgery | 2017

Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance

Justin A. Neira; Timothy Ung; Jennifer S. Sims; Hani R. Malone; Daniel S. Chow; Jorge Samanamud; George Zanazzi; Xiaotao Guo; Stephen G. Bowden; Binsheng Zhao; Sameer A. Sheth; Guy M. McKhann; Michael B. Sisti; Peter Canoll; Randy S. D'Amico; Jeffrey N. Bruce

OBJECTIVE Extent of resection is an important prognostic factor in patients undergoing surgery for glioblastoma (GBM). Recent evidence suggests that intravenously administered fluorescein sodium associates with tumor tissue, facilitating safe maximal resection of GBM. In this study, the authors evaluate the safety and utility of intraoperative fluorescein guidance for the prediction of histopathological alteration both in the contrast-enhancing (CE) regions, where this relationship has been established, and into the non-CE (NCE), diffusely infiltrated margins. METHODS Thirty-two patients received fluorescein sodium (3 mg/kg) intravenously prior to resection. Fluorescence was intraoperatively visualized using a Zeiss Pentero surgical microscope equipped with a YELLOW 560 filter. Stereotactically localized biopsy specimens were acquired from CE and NCE regions based on preoperative MRI in conjunction with neuronavigation. The fluorescence intensity of these specimens was subjectively classified in real time with subsequent quantitative image analysis, histopathological evaluation of localized biopsy specimens, and radiological volumetric assessment of the extent of resection. RESULTS Bright fluorescence was observed in all GBMs and localized to the CE regions and portions of the NCE margins of the tumors, thus serving as a visual guide during resection. Gross-total resection (GTR) was achieved in 84% of the patients with an average resected volume of 95%, and this rate was higher among patients for whom GTR was the surgical goal (GTR achieved in 93.1% of patients, average resected volume of 99.7%). Intraoperative fluorescein staining correlated with histopathological alteration in both CE and NCE regions, with positive predictive values by subjective fluorescence evaluation greater than 96% in NCE regions. CONCLUSIONS Intraoperative administration of fluorescein provides an easily visualized marker for glioma pathology in both CE and NCE regions of GBM. These findings support the use of fluorescein as a microsurgical adjunct for guiding GBM resection to facilitate safe maximal removal.


American Journal of Neuroradiology | 2017

A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies

Peter Chang; Hani Malone; Stephen G. Bowden; Daniel S. Chow; Brian J. Gill; Timothy Ung; Jorge Samanamud; Zachary K. Englander; Adam M. Sonabend; Sameer A. Sheth; Guy M. McKhann; Michael B. Sisti; L.H. Schwartz; Angela Lignelli; Jack Grinband; Jeffrey N. Bruce; Peter Canoll

Ninety-one localized biopsies were obtained from 36 patients with glioblastoma. Signal intensities corresponding to these samples were derived from T1-postcontrast subtraction, T2-FLAIR, and ADC sequences by using an automated coregistration algorithm. Cell density was calculated for each specimen by using an automated cell-counting algorithm. T2-FLAIR and ADC sequences were inversely correlated with cell density. T1-postcontrast subtraction was directly correlated with cell density. The authors conclude that the model illustrates a quantitative and significant relationship between MR signal and cell density. Applying this relationship over the entire tumor volume allows mapping of the intratumoral heterogeneity for both enhancing core and nonenhancing margins. BACKGROUND AND PURPOSE: The complex MR imaging appearance of glioblastoma is a function of underlying histopathologic heterogeneity. A better understanding of these correlations, particularly the influence of infiltrating glioma cells and vasogenic edema on T2 and diffusivity signal in nonenhancing areas, has important implications in the management of these patients. With localized biopsies, the objective of this study was to generate a model capable of predicting cellularity at each voxel within an entire tumor volume as a function of signal intensity, thus providing a means of quantifying tumor infiltration into surrounding brain tissue. MATERIALS AND METHODS: Ninety-one localized biopsies were obtained from 36 patients with glioblastoma. Signal intensities corresponding to these samples were derived from T1-postcontrast subtraction, T2-FLAIR, and ADC sequences by using an automated coregistration algorithm. Cell density was calculated for each specimen by using an automated cell-counting algorithm. Signal intensity was plotted against cell density for each MR image. RESULTS: T2-FLAIR (r = −0.61) and ADC (r = −0.63) sequences were inversely correlated with cell density. T1-postcontrast (r = 0.69) subtraction was directly correlated with cell density. Combining these relationships yielded a multiparametric model with improved correlation (r = 0.74), suggesting that each sequence offers different and complementary information. CONCLUSIONS: Using localized biopsies, we have generated a model that illustrates a quantitative and significant relationship between MR signal and cell density. Projecting this relationship over the entire tumor volume allows mapping of the intratumoral heterogeneity in both the contrast-enhancing tumor core and nonenhancing margins of glioblastoma and may be used to guide extended surgical resection, localized biopsies, and radiation field mapping.


Neurosurgery | 2018

Sodium Fluorescein Facilitates Guided Sampling of Diagnostic Tumor Tissue in Nonenhancing Gliomas

Stephen G. Bowden; Justin A. Neira; Brian J A Gill; Timothy Ung; Zachary K. Englander; George Zanazzi; Peter Chang; Jorge Samanamud; Jack Grinband; Sameer A. Sheth; Guy M. McKhann; Michael B. Sisti; Peter Canoll; Randy S. D’Amico; Jeffrey N. Bruce

BACKGROUND Accurate tissue sampling in nonenhancing (NE) gliomas is a unique surgical challenge due to their intratumoral histological heterogeneity and absence of contrast enhancement as a guide for intraoperative stereotactic guidance. Instead, T2/fluid-attenuated inversion-recovery (FLAIR) hyperintensity on MRI is commonly used as an imaging surrogate for pathological tissue, but sampling from this region can yield nondiagnostic or underdiagnostic brain tissue. Sodium fluorescein is an intraoperative fluorescent dye that has a high predictive value for tumor identification in areas of contrast enhancement and NE in glioblastomas. However, the underlying histopathological alterations in fluorescent regions of NE gliomas remain undefined. OBJECTIVE To evaluate whether fluorescein can identify diagnostic tissue and differentiate regions with higher malignant potential during surgery for NE gliomas, thus improving sampling accuracy. METHODS Thirteen patients who presented with NE, T2/FLAIR hyperintense lesions suspicious for glioma received fluorescein (10%, 3 mg/kg intravenously) during surgical resection. RESULTS Patchy fluorescence was identified within the T2/FLAIR hyperintense area in 10 of 13 (77%) patients. Samples taken from fluorescent regions were more likely to demonstrate diagnostic glioma tissue and cytologic atypia (P < .05). Fluorescein demonstrated a 95% positive predictive value for the presence of diagnostic tissue. Samples from areas of fluorescence also demonstrated greater total cell density and higher Ki-67 labeling than nonfluorescent biopsies (P < .05). CONCLUSION Fluorescence in NE gliomas is highly predictive of diagnostic tumor tissue and regions of higher cell density and proliferative activity.


American Journal of Neuroradiology | 2018

Local Glioma Cells Are Associated with Vascular Dysregulation

S.G. Bowden; Brian J. Gill; Zachary K. Englander; C.I. Horenstein; George Zanazzi; P.D. Chang; Jorge Samanamud; A. Lignelli; Jeffrey N. Bruce; Peter Canoll; J. Grinband

BACKGROUND AND PURPOSE: Malignant glioma is a highly infiltrative malignancy that causes variable disruptions to the structure and function of the cerebrovasculature. While many of these structural disruptions have known correlative histopathologic alterations, the mechanisms underlying vascular dysfunction identified by resting-state blood oxygen level–dependent imaging are not yet known. The purpose of this study was to characterize the alterations that correlate with a blood oxygen level–dependent biomarker of vascular dysregulation. Materials and Methods: Thirty-two stereotactically localized biopsies were obtained from contrast-enhancing (n = 16) and nonenhancing (n = 16) regions during open surgical resection of malignant glioma in 17 patients. Preoperative resting-state blood oxygen level–dependent fMRI was used to evaluate the relationships between radiographic and histopathologic characteristics. Signal intensity for a blood oxygen level–dependent biomarker was compared with scores of tumor infiltration and microvascular proliferation as well as total cell and neuronal density. Results: Biopsies corresponded to a range of blood oxygen level–dependent signals, ranging from relatively normal (z = −4.79) to markedly abnormal (z = 8.84). Total cell density was directly related to blood oxygen level–dependent signal abnormality (P = .013, R2 = 0.19), while the neuronal labeling index was inversely related to blood oxygen level–dependent signal abnormality (P = .016, R2 = 0.21). The blood oxygen level–dependent signal abnormality was also related to tumor infiltration (P = .014) and microvascular proliferation (P = .045). Conclusions: The relationship between local, neoplastic characteristics and a blood oxygen level–dependent biomarker of vascular function suggests that local effects of glioma cell infiltration contribute to vascular dysregulation.


World Neurosurgery | 2017

Subependymomas are low-grade heterogeneous glial neoplasms defined by subventricular zone lineage markers.

Randy S. D'Amico; Moshe Praver; George Zanazzi; Zachary K. Englander; Jennifer S. Sims; Jorge Samanamud; Alfred T. Ogden; Paul C. McCormick; Neil A. Feldstein; Guy M. McKhann; Michael B. Sisti; Peter Canoll; Jeffrey N. Bruce

OBJECTIVE Subependymomas are infrequent, low-grade gliomas associated with the ventricular system and the spinal cord. Little is known about the origin and natural history of these slow-growing lesions. METHODS We identified all patients with pathologically proven subependymomas presenting to our institution between 1998 and 2016. We retrospectively reviewed clinical, radiographic, histologic, and surgical outcomes data in all patients who underwent surgical resection. Immunohistochemical analyses for cell lineage markers were performed. RESULTS A total of 31 patients with pathologically proven subependymomas were identified. Of these, 7 asymptomatic lesions were discovered at autopsy and 24 symptomatic cases were treated surgically. There were 15 (48%) lateral ventricle tumors, 11 (35%) fourth ventricular tumors, and 5 (17%) spinal tumors. Symptomatic intracranial lesions most commonly presented with headaches and balance and gait abnormalities. Subependymomas had no distinguishing radiographic features that provided definitive preoperative diagnosis. At last follow-up, no patient treated surgically experienced recurrence. Immunohistochemical analyses demonstrated a diffusely GFAP-positive glial neoplasm with mixed populations of cells that were variably positive for Olig2, NHERF1, Sox2, and CD44. The Ki67 proliferation index was generally low (<1% in many of the tumors). CONCLUSIONS Subependymomas demonstrate mixed populations of cells expressing glial lineage markers as well as putative stem cell markers, suggesting these tumors may arise from multipotent glial progenitors that reside in the subventricular zone. Definitive diagnosis requires surgical sampling. Although the clinical course of subependymomas appears benign, the inability to radiographically diagnose these lesions, and the possibility of an alternative malignant lesion support a low threshold for early and safe maximal resection.


bioRxiv | 2018

Single-Cell Transcriptome Analysis of Lineage Diversity and Microenvironment in High-Grade Glioma

Jinzhou Yuan; Hanna Mendes Levitin; Veronique Frattini; Erin C. Bush; Jorge Samanamud; Michele Ceccarelli; Athanassios Dovas; George Zanazzi; Peter Canoll; Jeffrey N. Bruce; Anna Lasorella; Antonio Iavarone; Peter A. Sims

Despite extensive molecular characterization, we lack a comprehensive picture of lineage identity, differentiation, and microenvironmental composition in high-grade gliomas (HGGs). We sampled the cellular milieu of HGGs with massively-parallel single-cell RNA-Seq. While HGG cells can resemble glia or even immature neurons and form branched lineage structures, mesenchymal transformation results in unstructured populations. Glioma cells in a subset of mesenchymal tumors lose their neural lineage identity, express inflammatory genes, and co-exist with marked myeloid infiltration, implying a molecular interaction between glioma and immune cells. Finally, we found that myeloid cells are highly diverse in HGG with high expression of pro-inflammatory cytokines and microglial markers on one extreme to a macrophage-like phenotype on the other. However, enrichment of either gene signature is predictive of poor survival. Statement of Significance We used large-scale single-cell RNA-Seq to establish the extent of neural and non-neural lineage diversity in high-grade gliomas, discovery a tight coupling between proliferation and cell type, and identify disparate myeloid phenotypes that are predictive of poor survival.


Genome Medicine | 2018

Single-cell transcriptome analysis of lineage diversity in high-grade glioma

Jinzhou Yuan; Hanna Mendes Levitin; Veronique Frattini; Erin C. Bush; Deborah M. Boyett; Jorge Samanamud; Michele Ceccarelli; Athanassios Dovas; George Zanazzi; Peter Canoll; Jeffrey N. Bruce; Anna Lasorella; Antonio Iavarone; Peter A. Sims

BackgroundDespite extensive molecular characterization, we lack a comprehensive understanding of lineage identity, differentiation, and proliferation in high-grade gliomas (HGGs).MethodsWe sampled the cellular milieu of HGGs by profiling dissociated human surgical specimens with a high-density microwell system for massively parallel single-cell RNA-Seq. We analyzed the resulting profiles to identify subpopulations of both HGG and microenvironmental cells and applied graph-based methods to infer structural features of the malignantly transformed populations.ResultsWhile HGG cells can resemble glia or even immature neurons and form branched lineage structures, mesenchymal transformation results in unstructured populations. Glioma cells in a subset of mesenchymal tumors lose their neural lineage identity, express inflammatory genes, and co-exist with marked myeloid infiltration, reminiscent of molecular interactions between glioma and immune cells established in animal models. Additionally, we discovered a tight coupling between lineage resemblance and proliferation among malignantly transformed cells. Glioma cells that resemble oligodendrocyte progenitors, which proliferate in the brain, are often found in the cell cycle. Conversely, glioma cells that resemble astrocytes, neuroblasts, and oligodendrocytes, which are non-proliferative in the brain, are generally non-cycling in tumors.ConclusionsThese studies reveal a relationship between cellular identity and proliferation in HGG and distinct population structures that reflects the extent of neural and non-neural lineage resemblance among malignantly transformed cells.


Journal for ImmunoTherapy of Cancer | 2015

Precision immunophenotyping by high-throughput TCR sequencing in human glioma

Jennifer S. Sims; Boris Grinshpun; Yaping Feng; Timothy H. Ung; Justin A. Neira; Jorge Samanamud; Peter Canoll; Yufeng Shen; Peter A. Sims; Jeffrey N. Bruce

Meeting abstracts Immunotherapy for glioblastoma (GBM) is the subject of numerous clinical trials, given the potential for the adaptive immune response to combat this diffusely infiltrating tumor. However, rational application of immunotherapy to these tumors is challenging because of the peculiar

Collaboration


Dive into the Jorge Samanamud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Canoll

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Sims

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Zanazzi

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael B. Sisti

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge