Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörgen Samuelsson is active.

Publication


Featured researches published by Jörgen Samuelsson.


Journal of Separation Science | 2009

Potential of adsorption isotherm measurements for closer elucidating of binding in chiral liquid chromatographic phase systems

Jörgen Samuelsson; Robert Arnell; Torgny Fornstedt

The human body is a chiral environment and many drugs are chiral and interact differently depending on the type of enantiomer. Therefore, the interest in analytical and preparative separations of enantiomers has steadily increased over the years. LC is today the most important technique in analytical laboratories worldwide. The key to understand the separation system lies in the adsorption isotherm, which describes the equilibrium distribution of solutes between the mobile and stationary phases. By measuring adsorption isotherms in chiral phase systems, a deeper interpenetration concerning enantioselective and non-selective binding energies and adsorption processes is possible. Furthermore, this data provides the core information needed to optimize preparative chromatographic processes for purification of single enantiomers. However, the measurement of adsorption isotherms is a delicate matter and there are many dangerous pitfalls that may produce erroneous results and even wrong mechanistic conclusions. This review summarizes the most relevant methods and a workflow will be given for avoiding the common pitfalls and obtaining reliable data. Several applications from the literature are also treated to give insight in what information can potentially be obtained from using this methodology.


Journal of Chromatography A | 2014

Evaluation of co-solvent fraction, pressure and temperature effects in analytical and preparative supercritical fluid chromatography

Dennis Åsberg; Martin Enmark; Jörgen Samuelsson; Torgny Fornstedt

A chemometric approach is used for studying the combined effect of temperature, pressure and co-solvent fraction in analytical and preparative supercritical fluid chromatography (SFC). More specifically, by utilizing design of experiments coupled with careful measurements of the experimental conditions the interaction between pressure, temperature and co-solvent fraction was studied with respect to productivity, selectivity and retention in chiral SFC. A tris-(3,5-dimethylphenyl) carbamoyl cellulose stationary phase with carbon dioxide/methanol as mobile phase and the two racemic analytes trans-stilbene oxide (TSO) and 1,1′-bi-2-naphthol (BINOL) were investigated. It was found for the investigated model system that the co-solvent fraction and pressure were the parameters that most affected the retention factors and that the co-solvent fraction and column temperature were most important for controlling the selectivity. The productivity in the preparative mode of SFC was most influenced by the co-solvent fraction and temperature. Both high co-solvent fraction and temperature gave maximum productivity in the studied design space.


Journal of Chromatography A | 2010

Injection profiles in liquid chromatography. I. A fundamental investigation

Jörgen Samuelsson; Lena Edström; Patrik Forssén; Torgny Fornstedt

This is a fundamental experimental and theoretical investigation on how the injection profile depends on important experimental parameters. The experiments revealed that the injection profile becomes more eroded with increased (i) flow rate, (ii) viscosity of the eluent, (iii) size of the solute, (iv) injection volume and (v) inner diameter of the injection loop capillary. These observations cannot be explained by a 1D-convection-diffusion equation, since it does not account for the effect of the parabolic flow and the radial diffusion on the elution profile. Therefore, the 1D model was expanded into a 2D-convection-diffusion equation with cylindrical coordinates, a model that showed a good agreement with the experimental injection profiles dependence on the experimental parameters. For a deeper understanding of the appearance of the injection profile the 2D model is excellent, but to account for injection profiles of various injection volumes and flow rates in preparative and process-chromatography using computer-optimizations, a more pragmatic approach must be developed. The result will give guidelines about how to reduce the extra-column variance caused by the injection profile. This is important both for preparative and analytical chromatography; in particular for modern analytical systems using short and narrow columns.


Analytical Chemistry | 2008

Development of the Tracer-Pulse Method for Adsorption Studies of Analyte Mixtures in Liquid Chromatography Utilizing Mass Spectrometric Detection

Jörgen Samuelsson; Robert Arnell; Jarle S. Diesen; Julius Tibbelin; Alexander Paptchikhine; Torgny Fornstedt; Per J. R. Sjöberg

The tracer-pulse method provides the real adsorption data points directly from simple, straightforward calculations and is therefore a superior method for multicomponent adsorption isotherm determination in HPLC. Only one important problem has restricted its use so far: the tracer peaks are invisible using any conventional detection principle. We present a solution to this problem with an approach with a firm base in analytical chemistry, utilizing stable isotopes and mass spectrometric detection. The new approach was used for the determination of binary adsorption isotherms, and a systematic investigation was made of its main sources of error. With this modification, the tracer method can be a prime choice for future characterizations of multicomponent separation systems and of competitive drug binding studies.


Journal of Chromatography A | 2008

Impact of an error in the column hold-up time for correct adsorption isotherm determination in chromatography II. Can a wrong column porosity lead to a correct prediction of overloaded elution profiles?

Jörgen Samuelsson; Jia Zang; Anne Murunga; Torgny Fornstedt; Peter Sajonz

The adsorption isotherm was determined for phenol in methanol/water on a C-8 stationary phase using frontal analysis in staircase mode, assuming different total column porosities, from 1 to 87%. Each set of adsorption isotherm data, with a certain column porosity, was fitted to various adsorption models and the generated parameters were used to calculate overloaded elution band profiles that were compared with experiments. It was found that the bi-Langmuir model had an optimum fit for a porosity that corresponds well with the value found experimentally. The adsorption energy distribution (AED) calculations and error analysis confirmed a bimodal energy distribution. It was also found that band profiles can be accurately predicted with a quite arbitrary chosen porosity, under prerequisite that a wrong but flexible adsorption model is chosen instead of the correct one. The latter result is very useful for quick optimizations of preparative separations where the exact value of the column porosity is not available.


Journal of Chromatography A | 2010

Improvement in the generation of adsorption isotherm data in the elution by characteristic points method—The ECP-slope approach

Jörgen Samuelsson; Torgny Undin; Anders Törncrona; Torgny Fornstedt

The elution by characteristic points (ECP) method is a very rapid and precise method for determination of the phase system equilibrium of phase systems in broad solute concentration ranges. Thus, the method is especially suitable for rapid characterization of high efficient separation systems. One important source of error, the effects by the post-loop dispersion, was eliminated in a recent investigation. In this study, the systematic error caused by the selection of the integration starting point at concentration equal to 0 is eliminated. This is done by developing and validating a new procedure for isotherm data generation; the ECP-slope method. The method generates raw slope data of the adsorption isotherm instead of raw adsorption data by integrations as the classical ECP does. Both numerical and experimental data were used for the comparison of the classical ECP approach with the slope-ECP method.


Journal of Chromatography A | 2013

Determination of adsorption isotherms in supercritical fluid chromatography

Martin Enmark; Patrik Forssén; Jörgen Samuelsson; Torgny Fornstedt

In this study we will demonstrate the potential of modern integrated commercial analytical SFC-systems for rapid and reliable acquisition of thermodynamic data. This will be done by transferring the following adsorption isotherm determination methods from liquid chromatography (LC) to supercritical fluid chromatography (SFC): Elution by Characteristic Points (ECP), the Retention Time Method (RTM), the Inverse Method (IM) and the Perturbation Peak (PP) method. In order to transfer these methods to SFC in a reliable, reproducible way we will demonstrate that careful system verification using external sensors of mass flow, temperature and pressure are needed first. The adsorption isotherm data generated by the different methods were analyzed and compared and the adsorption isotherms ability to predict new experimental elution profiles was verified by comparing experiments with simulations. It was found that adsorption isotherm data determined based on elution profiles, i.e., ECP, IM and RTM, were able to accurately predict overloaded experimental elution profiles while the more tedious and time-consuming PP method, based on small injections on concentration plateaus, failed in doing so.


Journal of Chromatography A | 2013

Fast estimation of adsorption isotherm parameters in gradient elution preparative liquid chromatography. I: the single component case.

Dennis Åsberg; Marek Leśko; Martin Enmark; Jörgen Samuelsson; Krzysztof Kaczmarski; Torgny Fornstedt

The inverse method is a numeric method for fast estimation of adsorption isotherm parameters directly from overloaded elution profiles. However, it has previously only been used for isocratic experiments. Here we will extend the inverse method so it can be used for gradient elution too. This extended inverse method will make it possible to study the adsorption of substances whose retention factor vary strongly with the mobile-phase composition, like peptides and proteins, where the classic methods will fail. Our extended inverse method was verified using both simulations and real experiments. For simulated overloaded elution profiles we were able to determine almost exact Langmuir adsorption isotherm parameters with the new approach. From real experimental data, bi-Langmuir adsorption parameters were estimated using both the perturbation peak method and the extended inverse method. The shape of the acquired adsorption isotherms did match over the considered concentration range; however, the adsorption isotherm parameters found with the two methods were not the same. This is probably due to the fact that adsorption isotherm estimated with the inverse method is only a good approximation up to the highest eluted concentration in the used chromatograms. But this is not a serious drawback from a process point of view where the main objective is to make accurate predictions of elution profiles. The bi-Langmuir adsorption isotherm obtained with both methods could accurately predict the shape of overloaded elution profiles.


Journal of Chromatography A | 2011

Injection profiles in liquid chromatography II : predicting accurate injection-profiles for computer-assisted preparative optimizations.

Patrik Forssén; Lena Edström; Jörgen Samuelsson; Torgny Fornstedt

In computer assisted optimization of liquid chromatography it has been known for some years that it is important to use experimental injection profiles, instead of rectangular ones, in order to calculate accurate elution bands. However, the incorrectly assumed rectangular profiles are still mostly used especially in numerical optimizations. The reason is that the acquisition of injection profiles, for each injection volume and each flow rate considered in a computer-assisted optimization requires a too large number of experiments. In this article a new function is proposed, which enables highly accurate predictions of the injection profiles and thus more accurate computer optimizations, with a minimum experimental effort. To model the injection profiles for any injection volume at a constant flow rate, as few as two experimental injection profiles are required. If it is desirable to also take the effect of flow rate on the injection profiles into account, then just two additional experiments are required. The overlap between fitted and experimental injection profiles at different flow rates and different injection volumes were excellent, more than 90%, using experimental injection profiles from just four different injection volumes at two different flow rates. Moreover, it was demonstrated that the flow rate has a minor influence on the injection profiles and that the injection volume is the main parameter that needs to be accounted for.


Journal of Chromatography A | 2011

Expanding the elution by characteristic point method for determination of various types of adsorption isotherms.

Jörgen Samuelsson; Torgny Undin; Torgny Fornstedt

Important improvements have recently been made on the elution by characteristic point (ECP) method to increase the accuracy of the determined adsorption isotherms. However, the method has so far been limited/used for only type I adsorption isotherms (e.g. Langmuir, Tóth, bi-Langmuir). In this study, general strategies are developed to expand the ECP method for the determination of more complex adsorption isotherms including such containing inflection points. We will exemplify the methodology with type II, type III and type V isotherms. Guidelines are given for how to determine such isotherms using the ECP method and for the experimental considerations that must be taken into account or that may be eliminated in the particular case.

Collaboration


Dive into the Jörgen Samuelsson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krzysztof Kaczmarski

Rzeszów University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marek Leśko

Rzeszów University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge