Jørgen Schei
University Hospital of North Norway
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jørgen Schei.
Clinical Journal of The American Society of Nephrology | 2016
Jørgen Schei; Vidar Tor Nyborg Stefansson; Ulla Dorte Mathisen; Bjørn Odvar Eriksen; Solbu; Trond Jenssen; Toralf Melsom
BACKGROUND AND OBJECTIVES eGFR on the basis of creatinine (eGFRcre) associates differently with cardiovascular disease and mortality than eGFR on the basis of cystatin C (eGFRcys). This may be related to risk factors affecting the level of creatinine and cystatin C along non-GFR pathways, which may confound the association between eGFR and outcome. Nontraditional risk factors are usually not measured in epidemiologic studies of eGFR and cannot be adjusted for to reduce confounding. We examined whether the inflammatory markers soluble TNF receptor type 2 (sTNFR2), C-reactive protein (CRP), and fibrinogen associated differently with eGFR than with measured GFR (mGFR). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS GFR was measured by iohexol clearance in 1627 middle-aged participants without kidney disease, diabetes, or cardiovascular disease enrolled in the Renal Iohexol Clearance Survey Study from the Sixth Tromsø Study between 2007 and 2009. Generalized estimating equations were used to assess the residual associations between eGFR (eGFRcre, eGFRcys, and eGFR on the basis of creatinine and cystatin C) and the inflammatory markers relative to mGFR. RESULTS sTNFR2, CRP, and fibrinogen were associated with a higher eGFRcre after accounting for mGFR in multivariable-adjusted models (2.63 ml/min per 1.73 m(2); 95% confidence interval [95% CI], 2.1 to 3.2 per SD increase in sTNFR2, 0.93 ml/min per 1.73 m(2); 95% CI, 0.3 to 1.5 per SD increase in log CRP, and 1.19 ml/min per 1.73 m(2); 95% CI, 0.6 to 1.8 per SD increase in fibrinogen). sTNFR2 and CRP were inversely associated with eGFRcys (-1.4 ml/min per 1.73 m(2); 95% CI, -2.1 to -0.6 per SD increase in sTNFR2, and -0.76 ml/min per 1.73 m(2); 95% CI, -1.4 to -0.1 per SD increase in log CRP). CONCLUSIONS eGFRcre and eGFRcys are associated with inflammatory factors after accounting for mGFR but in opposite directions. These non-GFR-related associations may bias risk estimates by eGFR and, in part, explain the different risks predicted by eGFRcre and eGFRcys in longitudinal studies.
American Journal of Nephrology | 2015
Toralf Melsom; Ole-Martin Fuskevåg; Ulla Dorte Mathisen; Harald Strand; Jørgen Schei; Trond Jenssen; Marit Dahl Solbu; Bjørn Odvar Eriksen
Background: Estimated glomerular filtration rate (eGFR) based on either cystatin C or creatinine performs similarly in estimating measured GFR, but associate differently with cardiovascular disease (CVD) and mortality. This could be due to confounding by non-GFR-related traits associated with cystatin C and creatinine levels. We investigated non-GFR-related associations between eGFR and two types of nontraditional risk factors for CVD and death: L-arginine/dimethylarginine metabolism and insulin resistance. Methods: GFR was measured via iohexol clearance in a cross-sectional study of 1,624 middle-aged persons from the general population without CVD, diabetes or chronic kidney disease. The dimethylarginines were measured using liquid chromatography tandem mass spectrometry (LC-MSMS). Insulin resistance was determined by the homeostasis model assessment (HOMA-IR). Results: Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA), the L-arginine/ADMA ratio and insulin resistance were associated with creatinine-based eGFR after accounting for measured GFR in multivariable adjusted analyses. The cystatin C-based eGFR showed a similar residual association with SDMA; an oppositely directed, borderline significant association with ADMA; and a stronger residual association with insulin resistance compared with eGFR based on creatinine. Conclusion: Both creatinine- and cystatin C-based eGFR are influenced by nontraditional risk factors, which may bias risk prediction by eGFR in longitudinal studies.
Clinical Journal of The American Society of Nephrology | 2017
Jørgen Schei; Vidar Tor Nyborg Stefansson; Bjørn Odvar Eriksen; Trond Jenssen; Marit Dahl Solbu; Tom Wilsgaard; Toralf Melsom
BACKGROUND AND OBJECTIVES Higher levels of inflammatory markers have been associated with renal outcomes in diabetic populations. We investigated whether soluble TNF receptor 2 (TNFR2) and high-sensitivity C-reactive protein (hsCRP) were associated with the age-related GFR decline in a nondiabetic population using measured GFR (mGFR). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A representative sample of 1590 middle-aged people from the general population without prevalent kidney disease, diabetes, or cardiovascular disease were enrolled in the Renal Iohexol-Clearance Survey in Tromsø 6 (RENIS-T6) between 2007 and 2009. After a median of 5.6 years, 1296 persons were included in the Renal Iohexol-Clearance Survey Follow-Up Study. GFR was measured using iohexol clearance at baseline and follow-up. RESULTS The mean decline of mGFR during the period was -0.84 ml/min per 1.73 m2 per year. There were 133 participants with rapid mGFR decline, defined as an annual mGFR loss >3.0 ml/min per 1.73 m2, and 26 participants with incident CKD, defined as mGFR<60 ml/min per 1.73 m2 at follow-up. In multivariable adjusted mixed models, 1 mg/L higher levels of hsCRP were associated with an accelerated decline in mGFR of -0.03 ml/min per 1.73 m2 per year (95% confidence interval [95% CI], -0.05 to -0.01), and 1 SD higher TNFR2 was associated with a slower decline in mGFR (0.09 ml/min per 1.73 m2 per year; 95% CI, 0.01 to 0.18). In logistic regression models adjusted for sex, age, weight, and height, 1 mg/L higher levels of hsCRP were associated with higher risk of rapid mGFR decline (odds ratio, 1.03; 95% CI, 1.01 to 1.06) and incident CKD (odds ratio, 1.04; 95% CI, 1.00 to 1.08). CONCLUSIONS Higher baseline levels of hsCRP but not TNFR2 were associated with accelerated age-related mGFR decline and incident CKD in a general nondiabetic population.
Clinical Journal of The American Society of Nephrology | 2016
Toralf Melsom; Vidar Tor Nyborg Stefansson; Jørgen Schei; Marit Dahl Solbu; Trond Jenssen; Tom Wilsgaard; Bjørn Odvar Eriksen
BACKGROUND AND OBJECTIVES Hyperfiltration at the single-nephron level has been proposed as an early stage of kidney dysfunction of different origins. Evidence supporting this hypothesis in humans is lacking, because there is no method of measuring single-nephron GFR in humans. However, increased whole-kidney GFR in the same individual implies an increased single-nephron GFR, because the number of nephrons does not increase with age. We hypothesized that an increase in GFR would be associated with an increased albumin-to-creatinine ratio in a cohort of the general population. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We measured GFR by iohexol clearance at baseline in 2007-2009 and follow-up after 5.6 years in a representative sample of 1246 persons (aged 50-62 years) who were nondiabetic from the general population of Tromso, northern Norway. Participants were without cardiovascular disease, kidney disease, or diabetes at baseline. We investigated the association between change in GFR and change in albumin-to-creatinine ratio. Increased GFR was defined as a positive change in GFR (change in GFR>0 ml/min) from baseline to follow-up. An albumin-to-creatinine ratio >30 mg/g was classified as albuminuria. RESULTS Change in GFR was positively associated with a change in albumin-to-creatinine ratio in the entire cohort in the multiple linear regression. The albumin-to-creatinine ratiofollow-up-to-albumin-to-creatinine ratiobaseline ratio increased by 8.0% (95% confidence interval, 1.4 to 15.0) per SD increase in change in GFR. When participants with increased GFR (n=343) were compared with those with a reduced GFR (n=903), the ratio increased by 16.3% (95% confidence interval, 1.1 to 33.7). The multivariable adjusted odds ratio for incident albuminuria (n=14) was 4.98 (95% confidence interval, 1.49 to 16.13) for those with an increased GFR (yes/no). CONCLUSIONS Increasing GFR is associated with an increase in albumin-to-creatinine ratio and incident albuminuria in the general nondiabetic population. These findings support single-nephron hyperfiltration as a risk factor for albuminuria in the general population.
Hypertension | 2017
Bjørn Odvar Eriksen; Vidar Tor Nyborg Stefansson; Trond Jenssen; Ulla Dorte Mathisen; Jørgen Schei; Marit Dahl Solbu; Tom Wilsgaard; Toralf Melsom
Arterial stiffness is a risk factor for cardiovascular and chronic kidney disease. However, the role of arterial stiffness as a predictor of the age-related glomerular filtration rate (GFR) decline in the general population remains unresolved because of difficulty in measuring GFR with sufficient precision in epidemiological studies. The ambulatory arterial stiffness index (AASI) is a proposed indicator of arterial stiffness easily calculated from ambulatory blood pressure. We investigated whether AASI could predict GFR decline measured as iohexol clearance in the general population. We calculated AASI from baseline ambulatory blood pressure and measured the iohexol clearance at baseline and follow-up in the RENIS-FU study (Renal Iohexol Clearance Survey Follow-Up). AASI was defined as 1 minus the regression slope of the diastolic blood pressure measurement over the systolic blood pressure measurement for each patient. The RENIS cohort included a representative sample of the general middle-aged population without baseline diabetes mellitus, cardiovascular disease, or kidney disease (n=1608). The participant age was 50 to 62 years old at baseline, and the median observation time was 5.6 years. The mean (SD) of the GFR decline rate was 0.95 mL/min per year (2.23) and that of the AASI was 0.38 mL/min per year (0.13). Baseline ambulatory blood pressure or the night/day systolic or diastolic ambulatory blood pressure ratios were not associated with GFR decline. In multivariable-adjusted linear mixed regression analysis, 1 SD of increase in the baseline AASI was associated with a 0.14 mL/min per year (95% confidence interval, −0.26 to −0.02) steeper GFR decline. We conclude that the AASI is an independent risk factor for accelerated age-related GFR decline in the general middle-aged population.
Kidney International Reports | 2018
Toralf Melsom; Marit Dahl Solbu; Jørgen Schei; Vidar Tor Nyborg Stefansson; Jon Viljar Norvik; Trond Jenssen; Tom Wilsgaard; Bjørn Odvar Eriksen
Introduction A minimal increase in the albumin-to-creatinine ratio (ACR) predicts cardiovascular disease and mortality, but whether it predicts kidney function loss in nondiabetic persons is unclear. We investigated the association between ACR in the optimal or high-normal range and the rate of glomerular filtration rate (GFR) decline in a cohort from the general population without diabetes, cardiovascular, or chronic kidney disease. Methods In the Renal Iohexol Clearance Survey, we measured GFR using iohexol clearance in 1567 middle-aged nondiabetic individuals with an ACR <3.40 mg/mmol (30.0 mg/g) at baseline. The ACR was measured in unfrozen morning urine samples collected on 3 days before the GFR measurements. A total of 1278 (81%) participants had follow-up with GFR measurements after a median of 5.6 years. Results The median ACR at baseline was 0.22 mg/mmol (interquartile range: 0.10−0.51 mg/mmol), the mean ± SD GFR was 104.0 ± 20.1 ml/min, and the mean ± SD GFR decline rate was −0.95 ± 2.23 ml/min per year. Higher baseline ACR levels were associated with a steeper GFR decline in adjusted linear mixed models. Study participants with ACR levels of 0.11 to 0.45 and 0.46 ± 3.40 mg/mmol had a 0.25 ml/min per year (95% confidence interval [95% CI]: −0.03 to 0.53) and 0.31 ml/min per year (95% CI: 0.02−0.60) steeper rate of decline than those with ACR ≤0.10 mg/mmol in multivariable-adjusted analyses. Among study participants with an ACR of <1.13 mg/mmol (defined as the optimal range), those with an ACR of 0.11 to 1.12 mg/mmol (n = 812) had a 0.28 ml/min per year (95% CI: 0.04−0.52) steeper rate of GFR decline than those with an ACR of ≤0.10 mg/mmol (n = 655). Conclusion A mildly increased ACR is an independent risk factor for faster GFR decline in nondiabetic individuals.
Kidney International Reports | 2017
Jørgen Schei; Ole-Martin Fuskevåg; Vidar Tor Nyborg Stefansson; Marit Dahl Solbu; Trond Jenssen; Bjørn Odvar Eriksen; Toralf Melsom
Introduction Markers of oxidative stress increase with age and are prevalent with chronic kidney disease. However, the role of oxidative stress markers as predictors for kidney function decline in the general population is unclear. Methods We investigated whether a baseline urinary excretion of oxidative DNA damage (8-oxo-7,8-dihydro-2′-deoxyguanosine [8-oxodG]) and oxidative RNA damage (8-oxo-7,8-dihydroguanosine [8-oxoGuo]) was associated with the age-related glomerular filtration rate (GFR) decline or incident low-grade albuminuria during a median of 5.6 years of follow-up. In the Renal Iohexol Clearance Survey in the Sixth Tromsø Study, we measured GFR using iohexol clearance in 1591 participants without renal disease, diabetes, or cardiovascular disease. Low-grade albuminuria was defined as an albumin-creatinine ratio >1.13 mg/mmol. Results The mean (SD) annual GFR change was −0.84 (2.00) ml/min per 1.73 m2 per year. In linear mixed models, urinary 8-oxodG and 8-oxoGuo levels were not associated with the GFR change rate. In a multivariable adjusted logistic regression model, a baseline urinary 8-oxoGuo in the highest quartile was associated with an increased risk of low-grade albuminuria at follow-up (odds ratio: 2.64; 95% confidence interval: 1.50–4.65). When the highest quartile of urinary 8-oxoGuo was added to the baseline model, the area under the receiver operating characteristics curve for predicting low-grade albuminuria at follow-up improved from 0.67 to 0.71 (P = 0.002). Conclusion Oxidative stress measured as urinary 8-oxoGuo excretion was independently associated with incident low-grade albuminuria, but neither 8-oxoGuo nor 8-oxodG predicted an accelerated age-related GFR decline in a cohort representative of the middle-aged general population during almost 6 years of follow-up.
American Journal of Kidney Diseases | 2016
Toralf Melsom; Jørgen Schei; Vidar Tor Nyborg Stefansson; Marit Dahl Solbu; Trond Jenssen; Ulla Dorte Mathisen; Tom Wilsgaard; Bjørn Odvar Eriksen
Kidney International | 2016
Bjørn Odvar Eriksen; Vidar Tor Nyborg Stefansson; Trond Jenssen; Ulla Dorte Mathisen; Jørgen Schei; Marit Dahl Solbu; Tom Wilsgaard; Toralf Melsom
BMC Nephrology | 2016
Vidar Tor Nyborg Stefansson; Jørgen Schei; Trond Jenssen; Toralf Melsom; Bjørn Odvar Eriksen