Joris Blommaert
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joris Blommaert.
Monthly Notices of the Royal Astronomical Society | 2003
Jacco Th. van Loon; Gerard Gilmore; A. Omont; Joris Blommaert; I. S. Glass; Maria Messineo; F. Schuller; Mathias Schultheis; Issei Yamamura; HongSheng Zhao
Near- and mid-IR survey data from DENIS and ISOGAL are used to investigate the structure and formation history of the inner 10 ◦ (1.4 kpc) of the Milky Way galaxy. Synthetic bolometric corrections and extinction coefficients in the near- and mid-infrared (mid-IR) are derived for stars of different spectral types, to allow the transformation of theoretical isochrones into observable colour‐magnitude diagrams. The observed IR colour‐magnitude diagrams are used to derive the extinction, metallicity and age for individual stars. The inner galaxy is dominated by an old population (7 Gyr). In addition, an intermediate-age population (∼200 Myr‐7 Gyr) is detected, which is consistent with the presence of a few hundred asymptotic giant branch stars with heavy mass loss. Furthermore, young stars (200 Myr) are found across the inner bulge. The metallicities of these stellar population components are discussed. These results can be interpreted in terms of an early epoch of intense star formation and chemical enrichment that shaped the bulk of the bulge and nucleus, and a more continuous star formation history that gradually shaped the disc from the accretion of subsolar metallicity gas from the halo. A possible increase in star formation ∼200 Myr ago might have been triggered by a minor merger. Ever since the formation of the first stars, mechanisms have been at play that mix the populations from the nucleus, bulge and disc. Luminosity functions across the inner Galactic plane indicate the presence of an inclined (bar) structure at 1 kpc from the Galactic Centre, near the inner Lindblad resonance. The innermost part of the bulge, within ∼1 kpc from the Galactic Centre, seems azimuthally symmetric.
Astronomy and Astrophysics | 2011
Martin A. T. Groenewegen; C. Waelkens; M. J. Barlow; F. Kerschbaum; Pedro Garcia-Lario; J. Cernicharo; Joris Blommaert; Jeroen Bouwman; Martin Cohen; N. L. J. Cox; L. Decin; Katrina Exter; Walter Kieran Gear; Haley Louise Gomez; Peter Charles Hargrave; Th. Henning; Damien Hutsemekers; R. J. Ivison; Alain Jorissen; O. Krause; D. Ladjal; S. J. Leeks; T. Lim; Mikako Matsuura; Yaël Nazé; G. Olofsson; Roland Ottensamer; E. T. Polehampton; Th. Posch; Grégor Rauw
MESS (Mass-loss of Evolved StarS) is a guaranteed time key program that uses the PACS and SPIRE instruments on board the Herschel space observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and post-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants. In total, of order 150 objects are observed in imaging and about 50 objects inspectroscopy. This paper describes the target selection and target list, and the observing strategy. Key science projects are described, and illustrated using results obtained during Herschel’s science demonstration phase. Aperture photometry is given for the 70 AGB and post-AGB stars observed up to October 17, 2010, which constitutes the largest single uniform database of far-IR and sub-mm fluxes for late-type stars.
Experimental Astronomy | 2014
Zoltan Balog; Thomas Müller; Markus Nielbock; B. Altieri; Ulrich Klaas; Joris Blommaert; H. Linz; D. Lutz; Attila Moór; N. Billot; Marc Sauvage; K. Okumura
This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (α Boo, α Cet, α Tau, β And, γ Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is ∼2 % in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5 % in the blue and green band and 2 % in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5 % uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum νFν = λFλ = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.
The Astrophysical Journal | 2015
Mikako Matsuura; E. Dwek; Michael J. Barlow; B. L. Babler; M. Baes; Margaret M. Meixner; J. Cernicharo; Geoff Clayton; Loretta Dunne; Claes Fransson; J. Fritz; Walter Kieran Gear; Haley Louise Gomez; M. A. T. Groenewegen; Remy Indebetouw; R. J. Ivison; A. Jerkstrand; V. Lebouteiller; T. Lim; Peter Lundqvist; C. P. Pearson; Julia Roman-Duval; P. Royer; Lister Staveley-Smith; B. M. Swinyard; P. A. M. van Hoof; J. Th. van Loon; J. Verstappen; R. Wesson; Giovanna Zanardo
We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 micron data and improved imaging quality at 100 and 160 micron compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 micron [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 micron flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5+-0.1 Msun of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 Msun of amorphous carbon and 0.5 Msun of silicates, totalling 0.8 Msun of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.
Monthly Notices of the Royal Astronomical Society | 2006
Mikako Matsuura; Peter R. Wood; G. C. Sloan; Albert A. Zijlstra; J. Th. van Loon; M. A. T. Groenewegen; Joris Blommaert; M-R.L. Cioni; M. W. Feast; Harm Jan Habing; Sacha Hony; E. Lagadec; C. Loup; John W. Menzies; L. B. F. M. Waters; Patricia A. Whitelock
We investigate the molecular bands in carbon-rich AGB stars in the Large Magellanic Cloud (LMC), using the InfraRed Spectrograph (IRS) on board the Spitzer Space Telescope (SST) over the 5–38 µm range. All 26 low-resolution spectra show acetylene (C2H2) bands at 7 and 14 µm. The hydrogen cyanide (HCN) bands at these wavelengths are very weak or absent. This is consistent with low nitrogen abundances in the LMC. The observed 14 µm C2H2 band is reasonably reproduced by an excitation temperature of 500 K. There is no clear dilution of the 14 µm C2H2 band by circumstellar dust emission. This 14 µm band originates from molecular gas in the circumstellar envelope in these high mass-loss rate stars, in agreement with previous findings for Galactic stars. The C2H2 column density, derived from the 13.7 µm band, shows a gas mass-loss rate in the range 3 ×10 −6 to 5 ×10 −5 M ⊙ yr −1 . This is comparable with the total mass-loss rate of these stars estimated from the spectral energy distribution. Additionally, we compare the line strengths of the 13.7 µm C2H2 band of our LMC sample with those of a Galactic sample. Despite the low metallicity of the LMC, there is no clear difference in the C2H2 abundance among LMC and Galactic stars. This reflects the effect of the 3rd dredge-up bringing self-produced carbon to the surface, leading to high C/O ratios at low metallicity.
Astronomy and Astrophysics | 2011
A. Mayer; Alain Jorissen; F. Kerschbaum; S Mohamed; S. Van Eck; Roland Ottensamer; Joris Blommaert; L. Decin; Martin A. T. Groenewegen; Th. Posch; B. Vandenbussche; Christoffel Waelkens
Herschel’s PACS instrument observed the environment of the binary system Mira Ceti in the 70 and 160µm bands. These images reveal bright structures shaped as five broken arcs and faint er filaments in the ejected material of Mira’s primary star, t he famous AGB star o Ceti. The overall shape of the IR emission around Mira deviates significantly from the expected alignment with Mira’s exceptionally high space velocity. The observed broken arcs are neither connected to each other nor are they of a circular shape; they stretch over angular ranges of 80 to 100 degrees. By comparing Herschel and GALEX data, we found evidence for the disruption of the IR arcs by the fast outflow visible in both Hα and the far UV. Radial intensity profiles are derived, which p lace the arcs at distances of 6‐85 ′′ (550 ‐ 8000 AU) from the binary. Mira’s IR environment appears to be shaped by the complex interaction of Mira’s wind with its companion, the bipolar jet, and the ISM.
Astronomy and Astrophysics | 2010
D. Ladjal; Kay Justtanont; M. A. T. Groenewegen; Joris Blommaert; Christoffel Waelkens; M. J. Barlow
Context. During their evolution, asymptotic giant branch (AGB) stars experience a high mass loss which leads to the formation of a circumstellar envelope (CSE) of dust and gas. The mass loss process is the most important phenomenon during this evolutionary stage. In order to understand it, it is important to study the physical parameters of the CSE. The emission of the CSE in the (sub)millimetre range is dominated by the dust continuum. This means that (sub)millimetre observations are a key tool in tracing the dust and improving our knowledge of the mass loss process. Aims. The aim of this study is to use new submillimetre observations of a sample of evolved stars to constrain the CSE physical parameters. Methods. We used aperture photometry to determine the fluxes at 870 μm and to investigate the extended emission observed with the new APEX bolometer LABoCa. We computed the spectral energy distribution (SEDs) with the 1D radiative transfer code DUSTY, which we compared to literature data. Grain properties were calculated with both the spherical grains distribution and the continuous distribution of ellipsoids (CDE), and a comparison between the two is drawn. Synthetic surface brightness maps were derived from the modelling and were compared to the LABoCa brightness maps. Results. A sample of nine evolved stars with different chemistry was observed with LABoCa.We detected extended emission around four stars. Physical parameters of the circumstellar envelope were derived from SED modelling, like the dust chemical composition, the dust condensation temperature and the total mass of the envelope. It proved to be difficult to fit the SED and the intensity profile simultaneously however. The use of the CDE leads to “broad” SEDs when compared to spherical grains, and this results in steep density distributions (∝r−2.2 typically).
Astronomy and Astrophysics | 2011
Alain Jorissen; A. Mayer; S. Van Eck; Roland Ottensamer; F. Kerschbaum; Toshiya Ueta; Per Bergman; Joris Blommaert; L. Decin; Martin A. T. Groenewegen; J. Hron; Walter Nowotny; Hans Olofsson; Th. Posch; Lorant O. Sjouwerman; B. Vandenbussche; C. Waelkens
The asymptotic giant branch (AGB) stars X Her and TX Psc have been imaged at 70 and 160 μm with the PACS instrument onboard the Herschel satellite, as part of the large MESS (Mass loss of Evolved StarS) guaranteed time key program. The images reveal an axisymmetric extended structure with its axis oriented along the space motion of the stars. This extended structure is very likely to be shaped by the interaction of the wind ejected by the AGB star with the surrounding interstellar medium (ISM). As predicted by numerical simulations, the detailed structure of the wind-ISM interface depends upon the relative velocity between star+wind and the ISM, which is large for these two stars (108 and 55 km s −1 for X Her and TX Psc, respectively). In both cases, there is a compact blob upstream whose origin is not fully elucidated, but that could be the signature of some instability in the wind-ISM shock. Deconvolved images of X Her and TX Psc reveal several discrete structures along the outermost filaments, which could be Kelvin-Helmholtz vortices. Finally, TX Psc is surrounded by an almost circular ring (the signature of the termination shock?) that contrasts with the outer, more structured filaments. A similar inner circular structure seems to be present in X Her as well, albeit less clearly.
Astronomy and Astrophysics | 2013
A. Mayer; Alain Jorissen; F. Kerschbaum; Roland Ottensamer; Walter Nowotny; N. L. J. Cox; Bernhard Aringer; Joris Blommaert; L. Decin; S. Van Eck; Hans-Peter Gail; Martin A. T. Groenewegen; K Kornfeld; M. Mecina; Th. Posch; B. Vandenbussche; Christoffel Waelkens
The Mass loss of Evolved StarS (MESS) sample offers a selection of 78 asymptotic giant branch (AGB) stars and red supergiants (RSGs) observed with the PACS photometer on-board Herschel at 70 μm and 160 μm. For most of these objects, the dusty AGB wind is not spherically symmetric and the wind shape can be subdivided into four classes. In the present paper we concentrate on the influence of a companion on the morphology of the stellar wind. Literature was searched to find binaries in the MESS sample, which were subsequently linked to their wind-morphology class to assert that the binaries are not distributed equally among the classes. In the second part of the paper we concentrate on the circumstellar environment of the two prominent objects R Aqr and W Aql. Each shows a characteristic signature of a companion interaction with the stellar wind. For the symbiotic star R Aqr, PACS revealed two perfectly opposing arms that in part reflect the previously observed ring-shaped nebula in the optical. However, from the far-IR there is evidence that the emitting region is elliptical rather than circular. The outline of the wind of W Aql seems to follow a large Archimedean spiral formed by the orbit of the companion but also shows strong indications of an interaction with the interstellar medium. We investigated the nature of the companion of W Aql and found that the magnitude of the orbital period supports the size of the spiral outline.
arXiv: Astrophysics | 2008
Bernhard R. Brandl; Rainer Lenzen; E. Pantin; Alistair Glasse; Joris Blommaert; Lars Venema; Frank Molster; Ralf Siebenmorgen; Hermann Boehnhardt; Ewine F. van Dishoeck; Paul van der Werf; Thomas Henning; Wolfgang Brandner; Pierre-Olivier Lagage; T. J. T. Moore; M. Baes; Christoffel Waelkens; Christopher M. Wright; Hans Ulrich Kaufl; Sarah Kendrew; Remko Stuik; Laurent Jolissaint
METIS will be among the first generation of scientific instruments on the E-ELT. Focusing on highest angular resolution and high spectral resolution, METIS will provide diffraction limited imaging and coronagraphy from 3-14μm over an 20x20° field of view, as well as integral field spectroscopy at R ~ 100,000 from 2.9-5.3μm. In addition, METIS provides medium-resolution (R ~ 5000) long slit spectroscopy, and polarimetric measurements at N band. While the baseline concept has already been discussed at previous conferences, this paper focuses on the significant developments over the past two years in several areas: The science case has been updated to account for recent progress in the main science areas circum-stellar disks and the formation of planets, exoplanet detection and characterization, Solar system formation, massive stars and clusters, and star formation in external galaxies. We discuss the developments in the adaptive optics (AO) concept for METIS, the telescope interface, and the instrument modelling. Last but not least we provide an overview of our technology development programs, which ranges from coronagraphic masks, immersed gratings, and cryogenic beam chopper to novel approaches to mirror polishing, background calibration and cryo-cooling. These developments have further enhanced the design and technology readiness of METIS to reliably serve as an early discovery machine on the E-ELT.