Joris T.K. Quik
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joris T.K. Quik.
Chemosphere | 2010
Joris T.K. Quik; Iseult Lynch; Karen Van Hoecke; Cornelis J.H. Miermans; Karel A.C. De Schamphelaere; Colin R. Janssen; Kenneth A. Dawson; Martien A. Cohen Stuart; Dik van de Meent
The ecological risk assessment of chemicals including nanoparticles is based on the determination of adverse effects on organisms and on the environmental concentrations to which biota are exposed. The aim of this work was to better understand the behavior of nanoparticles in the environment, with the ultimate goal of predicting future exposure concentrations in water. We measured the concentrations and particle size distributions of CeO(2) nanoparticles in algae growth medium and deionized water in the presence of various concentrations and two types of natural organic matter (NOM). The presence of natural organic matter stabilizes the CeO(2) nanoparticles in suspension. In presence of NOM, up to 88% of the initially added CeO(2) nanoparticles remained suspended in deionized water and 41% in algae growth medium after 12d of settling. The adsorbed organic matter decreases the zeta potential from about -15 mV to -55 mV. This reduces aggregation by increased electrostatic repulsion. The particle diameter, pH, electric conductivity and NOM content shows significant correlation with the fraction of CeO(2) nanoparticles remaining in suspension.
Water Research | 2014
Joris T.K. Quik; I. Velzeboer; Marja Wouterse; Albert A. Koelmans; D. van de Meent
Exposure modeling of engineered nanomaterials requires input parameters such as sedimentation rates and heteroaggregation rates. Here, we estimate these rates using quiescent settling experiments under environmentally relevant conditions. We investigated 4 different nanomaterials (C60, CeO2, SiO2-Ag and PVP-Ag) in 6 different water types ranging from a small stream to seawater. In the presence of natural colloids, sedimentation rates ranged from 0.0001 m d(-1) for SiO2-Ag to 0.14 m d(-1) for C60. The apparent rates of heteroaggregation between nanomaterials and natural colloids were estimated using a novel method that separates heteroaggregation from homoaggregation using a simplified Smoluchowski-based aggregation-settling equation applied to data from unfiltered and filtered waters. The heteroaggregation rates ranged between 0.007 and 0.6 L mg(-1) day(-1), with the highest values observed in seawater. We argue that such system specific parameters are key to the development of dedicated water quality models for ENMs.
Environmental Toxicology and Chemistry | 2012
Joris T.K. Quik; Martien A. Cohen Stuart; Marja Wouterse; Willie J.G.M. Peijnenburg; A. Jan Hendriks; Dik van de Meent
Estimating the environmental exposure to manufactured nanomaterials is part of risk assessment. Because nanoparticles aggregate with each other (homoaggregation) and with other particles (heteroaggregation), the main route of the removal of most nanoparticles from water is aggregation, followed by sedimentation. The authors used water samples from two rivers in Europe, the Rhine and the Meuse. To distinguish between small (mainly natural organic matter [NOM]) particles and the remainder of the natural colloids present, both filtered and unfiltered river water was used to prepare the particle suspensions. The results show that the removal of nanoparticles from natural river water follows first-order kinetics toward a residual concentration. This was measured in river water with less than 1 mg L(-1) CeO(2) nanoparticles. The authors inferred that the heteroaggregation with or deposition onto the solid fraction of natural colloids was the main mechanism causing sedimentation in relation to homoaggregation. In contrast, the NOM fraction in filtered river water stabilized the residual nanoparticles against further sedimentation for up to 12 d. In 10 mg L(-1) and 100 mg L(-1) CeO(2) nanoparticle suspensions, homoaggregation is likely the main mechanism leading to sedimentation. The proposed model could form the basis for improved exposure assessment for nanomaterials.
Environmental Science & Technology | 2014
Johannes A.J. Meesters; Albert A. Koelmans; Joris T.K. Quik; A. Jan Hendriks; Dik van de Meent
Screening level models for environmental assessment of engineered nanoparticles (ENP) are not generally available. Here, we present SimpleBox4Nano (SB4N) as the first model of this type, assess its validity, and evaluate it by comparisons with a known material flow model. SB4N expresses ENP transport and concentrations in and across air, rain, surface waters, soil, and sediment, accounting for nanospecific processes such as aggregation, attachment, and dissolution. The model solves simultaneous mass balance equations (MBE) using simple matrix algebra. The MBEs link all concentrations and transfer processes using first-order rate constants for all processes known to be relevant for ENPs. The first-order rate constants are obtained from the literature. The output of SB4N is mass concentrations of ENPs as free dispersive species, heteroaggregates with natural colloids, and larger natural particles in each compartment in time and at steady state. Known scenario studies for Switzerland were used to demonstrate the impact of the transport processes included in SB4N on the prediction of environmental concentrations. We argue that SB4N-predicted environmental concentrations are useful as background concentrations in environmental risk assessment.
Environment International | 2011
Joris T.K. Quik; Jan Arie Vonk; Steffen Foss Hansen; Anders Baun; Dik van de Meent
Ecological risk of chemicals is measured by the quotient of predicted no-effect concentrations and predicted exposure concentrations, which are hard to assess for manufactured nanomaterials (NMs). This paper proposes modifications to currently used models, in order to make them suitable for estimating exposure concentrations of NMs in the aquatic environment. We have evaluated the adequacy of the current guidance documents for use with NMs and conclude that nano-specific fate processes, such as sedimentation and dissolution need to be incorporated. We have reviewed the literature on sedimentation and dissolution of NMs in environmentally relevant systems. We deduce that the overall kinetics of water-sediment transport of NMs should be close to first order. The lack of data on dissolution of NMs under environmentally realistic conditions calls for a pragmatic decision on which rates to be used in modeling. We find that first order removal kinetics for dissolution seems adequate. Based on limited data from literature, probable removal rates range from 0 to 10(-4)s(-1) for sedimentation, and from 0 to 10(-5)s(-1) for dissolution. Further experimental data at environmentally relevant conditions for sedimentation and dissolution of NMs is needed.
Critical Reviews in Environmental Science and Technology | 2015
Willie J.G.M. Peijnenburg; Mohamed Baalousha; Jingwen Chen; Q. Chaudry; F. von der Kammer; Thomas A. J. Kuhlbusch; Carmen Nickel; Joris T.K. Quik; M. Renkerg; Albert A. Koelmans
Proper understanding of the basic processes and specific properties of engineered nanomaterials (NMs) that modify the fate and effects of NMs is crucial for NM-tailored risk assessment. This in turn requires developers of NMs and for regulators to consider the most important parameters governing the properties, behavior and toxicity of NMs. As fate and effect studies are commonly performed in laboratory settings, mimicking to a varying extent realistic exposure conditions, it is important to be able to extrapolate results of fate and effect studies in synthetic media to realistic environmental conditions. This requires detailed understanding of the processes controlling the fate and behavior of NMs in terrestrial and aquatic media, as dependent on the composition of the medium. It is the aim of this contribution to provide background reading to the NM and media specific properties and processes that affect the fate and behavior of NMs in aquatic environments, focusing on the specific properties of NMs that modulate the interactions in the aquatic environment. A general introduction on the dominant fate determining processes of NMs is supplemented by case studies on specific classes of NMs: metal NMs, stable oxides, iron oxides, and carbon nanotubes. Based on the synthesis of the current knowledge base toward essential data and information needs, the review provides a description of the particle specific properties and the water characteristics that need monitoring in order to allow for future quantification and extrapolation of fate and behavior properties of NMs in freshwater compartments of varying composition.
Environmental Toxicology and Chemistry | 2014
Ilona Velzeboer; Joris T.K. Quik; Dik van de Meent; Albert A. Koelmans
Sedimentation of engineered nanoparticles (ENPs) has been studied mainly in artificial media and stagnant systems mimicking natural waters. This neglects the role of turbulence and heteroaggregation with sediment. The authors studied the apparent sedimentation rates of selected ENPs (cerium dioxide [CeO2 ], polyvinylpyrrolidone-capped silver [PVP-Ag], and silica-coated silver [SiO2 -Ag]) in agitated sediment-water systems resembling fresh, estuarine, and marine waters. Experiments were designed to mimic low energy and periodically resuspended sediment water systems (14 d), followed by a long-term aging, resuspension, and settling phase (6 months), as would occur in receiving shallow lakes. The ENPs in systems with periodical resuspension of sediment were removed with sedimentation rates between 0.14 m/d and 0.50 m/d. The sedimentation rates did not vary much among ENP type, salinity, and aging time, which is attributed to the capture of ENPs in sediment flocks. The sedimentation rates were 1 to 2 orders of magnitude higher than those reported for aggregation-sedimentation in stagnant systems without suspended sediment. Heteroaggregation rates were estimated and ranged between 0.151 L/mg/d and 0.547 L/mg/d, which is up to 29 times higher than those reported for natural colloids under quiescent settling conditions. The authors conclude that rapid scavenging and sedimentation drives removal of ENPs from the water column.
Science of The Total Environment | 2015
Albert A. Koelmans; N.J. Diepens; I. Velzeboer; E. Besseling; Joris T.K. Quik; D. van de Meent
Our understanding of the environmental fate and effects of engineered nanomaterials (ENMs) is in a state of fast transition. Recent scientific developments open new and powerful perspectives to define a framework for the prognostic risk assessment of ENMs in aquatic ecosystems. This requires abandoning the reductionists approach of mechanistic analysis on particle or cellular scales and calls for engineering solutions that deal with uncertainties by applying assessment factors and probabilistic approaches. An ecological risk assessment (ERA) framework for ENMs is similar to that for other classes of substances, in that it requires clear protection goals based on ecosystem services, evidence-based concepts that link exposure to effects, and a transparent tiered effect assessment. Here, we discuss approaches to assess exposure and effects of ENMs. This includes recent developments in ENP fate modeling that greatly expanded the potential of prognostic exposure assessments. For the effect assessment, we advise a cost-effective screening based on principles of read-across as a conservative first tier. The feasibility of using species sensitivity distributions as a higher tier option is discussed. Controlled model ecosystem field experiments are proposed as a highest experimental tier, and are required for the calibration of the lower tiers. An outlook to unify information from various tiers by experimental work, fate modeling, and effect modeling as cost-effective prognostic tools for the ERA of ENMs is provided.
Environmental science. Nano | 2016
Jeroen J. M. de Klein; Joris T.K. Quik; Patrick S. Bäuerlein; Albert A. Koelmans
It is generally acknowledged that fate models for engineered nanoparticles (ENPs) hardly can be validated, given present limitations in analytical methods available for ENPs. Here we report on progress towards validation of the spatially resolved hydrological ENP fate model NanoDUFLOW, by comparing measured and modeled concentrations of <450 nm Ce, Al, Ti and Zr-based particles for river Dommel (NL), as measured by Asymmetric Flow-Field-Flow Fractionation (AF4) coupled to ICP-MS. NanoDUFLOW simulates advection, aggregation–sedimentation, resuspension, dissolution and burial for singular ENPs, 5 classes of ENP homoaggregates and 25 classes of heteroaggregates, dynamically in space and time, and uses actual hydrological data of the river, 5 tributaries and a waste water treatment plant effluent. Validation for Ce particles was very good, whereas for Al, Ti and Zr particles, reasonable results were obtained. Model output was relatively insensitive to the attachment efficiency parameter, due to fast heteroaggregation. We argue that although the results cannot be taken as formal validation of singular <100 nm ENP behavior, they probably validate the reflection of that behavior on the level of natural and ENP-inclusive aggregate transport in the modeled system.
Environmental Toxicology and Chemistry | 2018
Zhuang Wang; Joris T.K. Quik; Lan Song; Marja Wouterse; Willie J.G.M. Peijnenburg
Comprehensive experimental quantification and mapping of the aggregation and dispersion state of engineered nanoparticles (NPs) in the presence of humic substances is a great challenge. Dissipative particle dynamic (DPD) simulation was adopted to investigate the aggregation and dispersion mechanisms of NPs in the presence of a humic substance analog. Twelve different types of NPs including 2 metal-based NPs, 7 metal oxide-based NPs, and 3 carbon-based NPs in pure water (pH 3.0) and algae medium (pH 8.0) in the presence of a humic substance analogy were selected for experimental verification of the DPD simulation results. In agreement with results obtained with dynamic light scattering and phase analysis light scattering techniques, the simulations demonstrated that the presence of humic substances reduced the aggregation extent of the NPs. The DPD simulations showed that the stability and dispersity of the NPs increased first, and then decreased with increasing concentrations of humic substances. Moreover, there existed a concentration of humic substances where the NPs became more stable and more dispersed, which was experimentally verified in the case of all the NPs in the pure water and in the algae medium. Furthermore, theory and simulation indicate that both hydrophobic and hydrogen interaction play an important role in controlling the formation of NP aggregates in the presence of humic substances. Electrostatic interaction and steric repulsion are the main mechanisms underlying the effects of humic substances on the aqueous dispersion stability of NPs. Environ Toxicol Chem 2018;37:1024-1031.