Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorma J. Palvimo is active.

Publication


Featured researches published by Jorma J. Palvimo.


Current Opinion in Pharmacology | 2011

Steroid up-regulation of FKBP51 and its role in hormone signaling.

Tiina Jääskeläinen; Harri Makkonen; Jorma J. Palvimo

FK506 binding protein 51 (FKBP51, FKBP5) functions as a co-chaperone for androgen, glucocorticoid, mineralocorticoid and progesterone receptors. The FKBP51 can act as an important determinant of the responses to steroids, especially to glucocorticoids in stress and mood disorders and androgens in prostate cancer, raising medical and pharmacological interests in the protein and its gene. Recent studies have revealed the molecular mechanisms by which the androgens and the glucocorticoids via their nuclear receptors elicit the robust up-regulation of the FKBP51 gene. Several polymorphisms in the FKBP51 gene have been associated with the mood disorders and differences in glucocorticoid sensitivity. The polymorphisms may contribute to the steroid up-regulation of the FKBP51 and thus influence the regulatory loops in steroid signaling.


Nucleic Acids Research | 2014

SUMOylation regulates the chromatin occupancy and anti-proliferative gene programs of glucocorticoid receptor

Ville Paakinaho; Sanna Kaikkonen; Harri Makkonen; Vladimir Benes; Jorma J. Palvimo

In addition to the glucocorticoids, the glucocorticoid receptor (GR) is regulated by post-translational modifications, including SUMOylation. We have analyzed how SUMOylation influences the activity of endogenous GR target genes and the receptor chromatin binding by using isogenic HEK293 cells expressing wild-type GR (wtGR) or SUMOylation-defective GR (GR3KR). Gene expression profiling revealed that both dexamethasone up- and downregulated genes are affected by the GR SUMOylation and that the affected genes are significantly associated with pathways of cellular proliferation and survival. The GR3KR-expressing cells proliferated more rapidly, and their anti-proliferative response to dexamethasone was less pronounced than in the wtGR-expressing cells. ChIP-seq analyses indicated that the SUMOylation modulates the chromatin occupancy of GR on several loci associated with cellular growth in a fashion that parallels with their differential dexamethasone-regulated expression between the two cell lines. Moreover, chromatin SUMO-2/3 marks, which were associated with active GR-binding sites, showed markedly higher overlap with the wtGR cistrome than with the GR3KR cistrome. In sum, our results indicate that the SUMOylation does not simply repress the GR activity, but regulates the activity of the receptor in a target locus selective fashion, playing an important role in controlling the GR activity on genes influencing cell growth.


The EMBO Journal | 2015

A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity

Dong Hyun Kim; Zhen Xiao; Sanghoon Kwon; Xiaoxiao Sun; Daniel Ryerson; David Tkac; Ping Ma; Shwu Yuan Wu; Cheng Ming Chiang; Edward Zhou; H. Eric Xu; Jorma J. Palvimo; Lin Feng Chen; Byron Kemper; Jongsook Kim Kemper

Acetylation of transcriptional regulators is normally dynamically regulated by nutrient status but is often persistently elevated in nutrient‐excessive obesity conditions. We investigated the functional consequences of such aberrantly elevated acetylation of the nuclear receptor FXR as a model. Proteomic studies identified K217 as the FXR acetylation site in diet‐induced obese mice. In vivo studies utilizing acetylation‐mimic and acetylation‐defective K217 mutants and gene expression profiling revealed that FXR acetylation increased proinflammatory gene expression, macrophage infiltration, and liver cytokine and triglyceride levels, impaired insulin signaling, and increased glucose intolerance. Mechanistically, acetylation of FXR blocked its interaction with the SUMO ligase PIASy and inhibited SUMO2 modification at K277, resulting in activation of inflammatory genes. SUMOylation of agonist‐activated FXR increased its interaction with NF‐κB but blocked that with RXRα, so that SUMO2‐modified FXR was selectively recruited to and trans‐repressed inflammatory genes without affecting FXR/RXRα target genes. A dysregulated acetyl/SUMO switch of FXR in obesity may serve as a general mechanism for diminished anti‐inflammatory response of other transcriptional regulators and provide potential therapeutic and diagnostic targets for obesity‐related metabolic disorders.


Molecular and Cellular Endocrinology | 2011

Androgen receptor amplification is reflected in the transcriptional responses of Vertebral-Cancer of the Prostate cells

Harri Makkonen; Miia Kauhanen; Tiina Jääskeläinen; Jorma J. Palvimo

Androgen receptor (AR) is overexpressed in a majority of castration-resistant prostate cancers, but most of the cell model studies addressing AR function have been conducted in LNCaP prostate cancer cells expressing unamplified AR levels. Here, we have compared the responses of various types of AR ligands towards a pattern of AR target genes and chromatin binding sites in Vertebral-Cancer of the Prostate (VCaP) cells and LNCaP cells. In keeping with the AR gene amplification in VCaP cells, our analyses show that these cells contain ≥10-fold receptor mRNA and protein than LNCaP cells. Loading of the agonist-occupied AR onto chromatin regulatory sites and expression of several AR target genes, including their basal expression, were stronger in VCaP cells than LNCaP cells. Bicalutamide displayed a trend towards agonism in VCaP cells. Bicalutamide also evoked AR-chromatin interaction, whereas diarylthiohydantoin antiandrogen RD162 was inert with this respect both in VCaP and LNCaP cells. These results support the notion that the AR protein level translates into augmented occupancy of AR-regulated enhancers and target gene activity in prostate cancer cells.


Steroids | 2011

Interleukins 1α and 1β as regulators of steroidogenesis in human NCI-H295R adrenocortical cells.

Irina V. Tkachenko; Tiina Jääskeläinen; Jarmo Jääskeläinen; Jorma J. Palvimo; Raimo Voutilainen

Inflammatory cytokines interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) regulate the activity of the hypothalamo-pituitary-adrenal (HPA) axis at several levels. Although hypothalamic CRH secretion may be the primary mechanism by which these cytokines activate the HPA axis, IL-1 expression is increased within the adrenal glands in models for systemic inflammation, and IL-1 may augment adrenal glucocorticoid production. Our aim was to investigate the direct effects of IL-1α and IL-1β on adrenal steroidogenesis and expression of three key steroidogenic genes in human adrenocortical cells using the NCI-H295R cell line as a model. mRNAs encoding receptors for IL-1, TNF-α, and leukemia inhibitory factor (LIF) were detectable in the cell line (Affymetrix microarray analysis). Both IL-1α and IL-1β increased cortisol, androstenedione, dehydroepiandrosterone and dehydroepiandrosterone sulfate production, and the accumulation of mRNAs for steroidogenic acute regulatory protein (STAR), 17α-hydroxylase/17,20-lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase 2 (HSD3B2) in these cells (P<0.05 for all). Both ILs augmented TNF-α- and LIF-induced STAR and CYP17A1 mRNA accumulation, and TNF-α-induced cortisol production (P<0.05 for all). Both ILs also increased the apoptotic index of the cells (P<0.05), which was efficiently neutralized by their specific antibodies. The IL-induced changes in the STAR, HSD3B2, and CYP17A1 protein levels were not as evident as those in the respective mRNA levels. In conclusion, the combined effect of inflammatory cytokines at the adrenal level in acute or chronic inflammatory states could significantly stimulate glucocorticoid production, and thus explain the observed discrepancy between the cortisol and ACTH concentrations sometimes seen in sepsis and chronic inflammatory states.


Nature Structural & Molecular Biology | 2015

A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly

Nathalie Eisenhardt; Viduth K. Chaugule; Stefanie Koidl; Mathias Droescher; Esen Dogan; Jan Rettich; Päivi Sutinen; Susumu Y. Imanishi; Kay Hofmann; Jorma J. Palvimo; Andrea Pichler

SUMO chains act as stress-induced degradation tags or repair factor–recruiting signals at DNA lesions. Although E1 activating, E2 conjugating and E3 ligating enzymes efficiently assemble SUMO chains, specific chain-elongation mechanisms are unknown. E4 elongases are specialized E3 ligases that extend a chain but are inefficient in the initial conjugation of the modifier. We identified ZNF451, a representative member of a new class of SUMO2 and SUMO3 (SUMO2/3)-specific enzymes that execute catalysis via a tandem SUMO-interaction motif (SIM) region. One SIM positions the donor SUMO while a second SIM binds SUMO on the back side of the E2 enzyme. This tandem-SIM region is sufficient to extend a back side–anchored SUMO chain (E4 elongase activity), whereas efficient chain initiation also requires a zinc-finger region to recruit the initial acceptor SUMO (E3 ligase activity). Finally, we describe four human proteins sharing E4 elongase activities and their function in stress-induced SUMO2/3 conjugation.


Molecular and Cellular Endocrinology | 2013

Proto-oncogene PIM-1 is a novel estrogen receptor target associating with high grade breast tumors.

Marjo Malinen; Tiina Jääskeläinen; Mikko Pelkonen; Sami Heikkinen; Sami Väisänen; Veli-Matti Kosma; Kaisa Nieminen; Arto Mannermaa; Jorma J. Palvimo

We searched ERα cistromes of MCF-7 breast cancer cells for previously unrecognized ERα targets and identified proto-oncogene PIM-1 as a novel potential target gene. We show that the expression of PIM-1 is induced in response to estradiol in MCF-7 cells and that the induction is mediated by ERα-regulated enhancers located distally upstream from the gene. In keeping with the growth-promoting role of the PIM-1, depletion of the PIM-1 attenuated the proliferation of the MCF-7 cells, which was paralleled with up-regulation of cyclin-dependent protein kinase inhibitor CDKN1A and CDKN2B expression. Analysis of PIM-1 expression between invasive breast tumors and benign breast tissue samples showed that elevated PIM-1 expression is associated with malignancy and a higher tumor grade. In sum, identification of PIM-1 as an ERα target gene adds a novel potential mechanism by which estrogens can contribute to breast cancer cell proliferation and carcinogenesis.


Genome Biology | 2015

Global SUMOylation on active chromatin is an acute heat stress response restricting transcription

Einari A. Niskanen; Marjo Malinen; Päivi Sutinen; Sari Toropainen; Ville Paakinaho; Anniina Vihervaara; Jenny Joutsen; Minna U. Kaikkonen; Lea Sistonen; Jorma J. Palvimo

BackgroundCells have developed many ways to cope with external stress. One distinctive feature in acute proteotoxic stresses, such as heat shock (HS), is rapid post-translational modification of proteins by SUMOs (small ubiquitin-like modifier proteins; SUMOylation). While many of the SUMO targets are chromatin proteins, there is scarce information on chromatin binding of SUMOylated proteins in HS and the role of chromatin SUMOylation in the regulation of transcription.ResultsWe mapped HS-induced genome-wide changes in chromatin occupancy of SUMO-2/3-modified proteins in K562 and VCaP cells using ChIP-seq. Chromatin SUMOylation was further correlated with HS-induced global changes in transcription using GRO-seq and RNA polymerase II (Pol2) ChIP-seq along with ENCODE data for K562 cells. HS induced a rapid and massive rearrangement of chromatin SUMOylation pattern: SUMOylation was gained at active promoters and enhancers associated with multiple transcription factors, including heat shock factor 1. Concomitant loss of SUMOylation occurred at inactive intergenic chromatin regions that were associated with CTCF-cohesin complex and SETDB1 methyltransferase complex. In addition, HS triggered a dynamic chromatin binding of SUMO ligase PIAS1, especially onto promoters. The HS-induced SUMOylation on chromatin was most notable at promoters of transcribed genes where it positively correlated with active transcription and Pol2 promoter-proximal pausing. Furthermore, silencing of SUMOylation machinery either by depletion of UBC9 or PIAS1 enhanced expression of HS-induced genes.ConclusionsHS-triggered SUMOylation targets promoters and enhancers of actively transcribed genes where it restricts the transcriptional activity of the HS-induced genes. PIAS1-mediated promoter SUMOylation is likely to regulate Pol2-associated factors in HS.


Molecular and Cellular Biology | 2012

Dynamic SUMOylation Is Linked to the Activity Cycles of Androgen Receptor in the Cell Nucleus

Miia Rytinki; Sanna Kaikkonen; Päivi Sutinen; Ville Paakinaho; Vesa Rahkama; Jorma J. Palvimo

ABSTRACT Despite of the progress in the molecular etiology of prostate cancer, the androgen receptor (AR) remains the major druggable target for the advanced disease. In addition to hormonal ligands, AR activity is regulated by posttranslational modifications. Here, we show that androgen induces SUMO-2 and SUMO-3 (SUMO-2/3) modification (SUMOylation) of the endogenous AR in prostate cancer cells, which is also reflected in the chromatin-bound receptor. Although only a small percentage of AR is SUMOylated at the steady state, AR SUMOylation sites have an impact on the receptors stability, intranuclear mobility, and chromatin interactions and on expression of its target genes. Interestingly, short-term proteotoxic and cell stress, such as hyperthermia, that detaches the AR from the chromatin triggers accumulation of the SUMO-2/3-modified AR pool which concentrates into the nuclear matrix compartment. Alleviation of the stress allows rapid reversal of the SUMO-2/3 modifications and the AR to return to the chromatin. In sum, these results suggest that the androgen-induced SUMOylation is linked to the activity cycles of the holo-AR in the nucleus and chromatin binding, whereas the stress-induced SUMO-2/3 modifications sustain the solubility of the AR and protect it from proteotoxic insults in the nucleus.


Journal of Medicinal Chemistry | 2012

Design, synthesis, and biological evaluation of nonsteroidal cycloalkane[d]isoxazole-containing androgen receptor modulators.

Pekka K. Poutiainen; Tuomas Oravilahti; Mikael Peräkylä; Jorma J. Palvimo; Janne A. Ihalainen; Reino Laatikainen; Juha T. Pulkkinen

We report here the design, preparation, and systematic evaluation of a novel cycloalkane[d]isoxazole pharmacophoric fragment-containing androgen receptor (AR) modulators. Cycloalkane[d]isoxazoles form new core structures that interact with the hydrophobic region of the AR ligand-binding domain. To systematize and rationalize the structure-activity relationship of the new fragment, we used molecular modeling to design a molecular library containing over 40 cycloalkane[d]isoxazole derivatives. The most potent compound, 4-(3a,4,5,6,7,7a-hexahydrobenzo[d]isoxazol-3-yl)-2-(trifluoromethyl)benzonitrile (6a), exhibits antiandrogenic activity significantly greater than that of the most widely used antiandrogenic prostate cancer drugs bicalutamide (1) and hydroxyflutamide (2) in reporter gene assays measuring the transcriptional activity of AR (decreasing approximately 90% of the total AR activity) and in competitive AR ligand-binding assays (showing over four times higher potency to inhibit radioligand binding in comparison to bicalutamide). Notably, 6a maintains its antiandrogenic activity with AR mutants W741L and T877A commonly observed and activated by bicalutamide and hydroxyflutamide, respectively, in prostate cancer patients.

Collaboration


Dive into the Jorma J. Palvimo's collaboration.

Top Co-Authors

Avatar

Tiina Jääskeläinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Marjo Malinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Sanna Kaikkonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Päivi Sutinen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Miia Rytinki

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Harri Makkonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Ville Paakinaho

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Arto Mannermaa

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veli-Matti Kosma

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge