Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörn Lewin is active.

Publication


Featured researches published by Jörn Lewin.


Nature Genetics | 2006

DNA methylation profiling of human chromosomes 6, 20 and 22

Florian Eckhardt; Jörn Lewin; Rene Cortese; Vardhman K. Rakyan; John Attwood; Matthias Burger; John Burton; Tony Cox; Rob Davies; Thomas A. Down; Carolina Haefliger; Roger Horton; Kevin L. Howe; David K. Jackson; Jan Kunde; Christoph Koenig; Jennifer Liddle; David Niblett; Thomas Otto; Roger Pettett; Stefanie Seemann; Christian Thompson; Tony West; Jane Rogers; Alex Olek; Kurt Berlin; Stephan Beck

DNA methylation is the most stable type of epigenetic modification modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of six annotation categories showed that evolutionarily conserved regions are the predominant sites for differential DNA methylation and that a core region surrounding the transcriptional start site is an informative surrogate for promoter methylation. We find that 17% of the 873 analyzed genes are differentially methylated in their 5′ UTRs and that about one-third of the differentially methylated 5′ UTRs are inversely correlated with transcription. Despite the fact that our study controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought.


PLOS Biology | 2004

DNA methylation profiling of the human major histocompatibility complex: A pilot study for the Human Epigenome Project

Vardhman K. Rakyan; Thomas Hildmann; Kl Novik; Jörn Lewin; Jörg Tost; Antony Cox; T. Dan Andrews; Kevin L. Howe; Thomas Otto; Alexander Olek; Judith Fischer; Ivo Gut; Kurt Berlin; Stephan Beck

The Human Epigenome Project aims to identify, catalogue, and interpret genome-wide DNA methylation phenomena. Occurring naturally on cytosine bases at cytosine–guanine dinucleotides, DNA methylation is intimately involved in diverse biological processes and the aetiology of many diseases. Differentially methylated cytosines give rise to distinct profiles, thought to be specific for gene activity, tissue type, and disease state. The identification of such methylation variable positions will significantly improve our understanding of genome biology and our ability to diagnose disease. Here, we report the results of the pilot study for the Human Epigenome Project entailing the methylation analysis of the human major histocompatibility complex. This study involved the development of an integrated pipeline for high-throughput methylation analysis using bisulphite DNA sequencing, discovery of methylation variable positions, epigenotyping by matrix-assisted laser desorption/ionisation mass spectrometry, and development of an integrated public database available at http://www.epigenome.org. Our analysis of DNA methylation levels within the major histocompatibility complex, including regulatory exonic and intronic regions associated with 90 genes in multiple tissues and individuals, reveals a bimodal distribution of methylation profiles (i.e., the vast majority of the analysed regions were either hypo- or hypermethylated), tissue specificity, inter-individual variation, and correlation with independent gene expression data.


BMC Cancer | 2010

SHOX2 DNA Methylation is a Biomarker for the diagnosis of lung cancer based on bronchial aspirates

Bernd Schmidt; Volker Liebenberg; Dimo Dietrich; Thomas Schlegel; Christoph Kneip; Anke Seegebarth; Nadja Flemming; Stefanie Seemann; Jürgen Distler; Jörn Lewin; Reimo Tetzner; Sabine Weickmann; Ulrike Wille; Triantafillos Liloglou; Olaide Y. Raji; M.J. Walshaw; Michael Fleischhacker; Christian Witt; John K. Field

BackgroundThis study aimed to show that SHOX2 DNA methylation is a tumor marker in patients with suspected lung cancer by using bronchial fluid aspirated during bronchoscopy. Such a biomarker would be clinically valuable, especially when, following the first bronchoscopy, a final diagnosis cannot be established by histology or cytology. A test with a low false positive rate can reduce the need for further invasive and costly procedures and ensure early treatment.MethodsMarker discovery was carried out by differential methylation hybridization (DMH) and real-time PCR. The real-time PCR based HeavyMethyl technology was used for quantitative analysis of DNA methylation of SHOX2 using bronchial aspirates from two clinical centres in a case-control study. Fresh-frozen and Saccomanno-fixed samples were used to show the tumor marker performance in different sample types of clinical relevance.ResultsValid measurements were obtained from a total of 523 patient samples (242 controls, 281 cases). DNA methylation of SHOX2 allowed to distinguish between malignant and benign lung disease, i.e. abscesses, infections, obstructive lung diseases, sarcoidosis, scleroderma, stenoses, at high specificity (68% sensitivity [95% CI 62-73%], 95% specificity [95% CI 91-97%]).ConclusionsHypermethylation of SHOX2 in bronchial aspirates appears to be a clinically useful tumor marker for identifying subjects with lung carcinoma, especially if histological and cytological findings after bronchoscopy are ambiguous.


BMC Cancer | 2010

CDO1 Promoter Methylation is a Biomarker for Outcome Prediction of Anthracycline Treated, Estrogen Receptor-Positive, Lymph Node-Positive Breast Cancer Patients

Dimo Dietrich; Manuel Krispin; Jörn Dietrich; Anne Fassbender; Jörn Lewin; Nadia Harbeck; Manfred Schmitt; Serenella Eppenberger-Castori; Vincent Vuaroqueaux; Frédérique Spyratos; John A. Foekens; Ralf Lesche; John W.M. Martens

BackgroundVarious biomarkers for prediction of distant metastasis in lymph-node negative breast cancer have been described; however, predictive biomarkers for patients with lymph-node positive (LNP) disease in the context of distinct systemic therapies are still very much needed. DNA methylation is aberrant in breast cancer and is likely to play a major role in disease progression. In this study, the DNA methylation status of 202 candidate loci was screened to identify those loci that may predict outcome in LNP/estrogen receptor-positive (ER+) breast cancer patients with adjuvant anthracycline-based chemotherapy.MethodsQuantitative bisulfite sequencing was used to analyze DNA methylation biomarker candidates in a retrospective cohort of 162 LNP/ER+ breast cancer patients, who received adjuvant anthracycline-based chemotherapy. First, twelve breast cancer specimens were analyzed for all 202 candidate loci to exclude genes that showed no differential methylation. To identify genes that predict distant metastasis, the remaining loci were analyzed in 84 selected cases, including the 12 initial ones. Significant loci were analyzed in the remaining 78 independent cases. Metastasis-free survival analysis was conducted by using Cox regression, time-dependent ROC analysis, and the Kaplan-Meier method. Pairwise multivariate regression analysis was performed by linear Cox Proportional Hazard models, testing the association between methylation scores and clinical parameters with respect to metastasis-free survival.ResultsOf the 202 loci analysed, 37 showed some indication of differential DNA methylation among the initial 12 patient samples tested. Of those, 6 loci were associated with outcome in the initial cohort (n = 84, log rank test, p < 0.05).Promoter DNA methylation of cysteine dioxygenase 1 (CDO1) was confirmed in univariate and in pairwise multivariate analysis adjusting for age at surgery, pathological T stage, progesterone receptor status, grade, and endocrine therapy as a strong and independent biomarker for outcome prediction in the independent validation set (log rank test p-value = 0.0010).ConclusionsCDO1 methylation was shown to be a strong predictor for distant metastasis in retrospective cohorts of LNP/ER+ breast cancer patients, who had received adjuvant anthracycline-based chemotherapy.


PLOS ONE | 2011

Genome-Wide Screen for Differential DNA Methylation Associated with Neural Cell Differentiation in Mouse

Rene Cortese; Jörn Lewin; Liselotte Bäckdahl; Manuel Krispin; Reinhold Wasserkort; Florian Eckhardt; Stephan Beck

Cellular differentiation involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Using Differential Methylation Hybridization (DMH) in combination with a custom DMH array containing 51,243 features covering more than 16,000 murine genes, we carried out a genome-wide screen for cell- and tissue-specific differentially methylated regions (tDMRs) in undifferentiated embryonic stem cells (ESCs), in in-vitro induced neural stem cells (NSCs) and 8 differentiated embryonic and adult tissues. Unsupervised clustering of the generated data showed distinct cell- and tissue-specific DNA methylation profiles, revealing 202 significant tDMRs (p<0.005) between ESCs and NSCs and a further 380 tDMRs (p<0.05) between NSCs/ESCs and embryonic brain tissue. We validated these tDMRs using direct bisulfite sequencing (DBS) and methylated DNA immunoprecipitation on chip (MeDIP-chip). Gene ontology (GO) analysis of the genes associated with these tDMRs showed significant (absolute Z score>1.96) enrichment for genes involved in neural differentiation, including, for example, Jag1 and Tcf4. Our results provide robust evidence for the relevance of DNA methylation in early neural development and identify novel marker candidates for neural cell differentiation.


Forensic Science International-genetics | 2016

Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length

Dmitry Zubakov; Fan Liu; Iris Kokmeijer; Ying Choi; Joyce B. J. van Meurs; Wilfred van IJcken; André G. Uitterlinden; Albert Hofman; Linda Broer; Cornelia M. van Duijn; Jörn Lewin; Manfred Kayser

Establishing the age of unknown persons, or persons with unknown age, can provide important leads in police investigations, disaster victim identification, fraud cases, and in other legal affairs. Previous methods mostly relied on morphological features available from teeth or skeletal parts. The development of molecular methods for age estimation allowing to use human specimens that possess no morphological age information, such as bloodstains, is extremely valuable as this type of samples is commonly found at crime scenes. Recently, we introduced a DNA-based approach for human age estimation from blood based on the quantification of T-cell specific DNA rearrangements (sjTRECs), which achieves accurate assignment of blood DNA samples to one of four 20-year-interval age categories. Aiming at improving the accuracy of molecular age estimation from blood, we investigated different types of biomarkers. We started out by systematic genome-wide surveys for new age-informative mRNA and DNA methylation markers in blood from the same young and old individuals using microarray technologies. The obtained candidate markers were validated in independent samples covering a wide age range using alternative technologies together with previously proposed DNA methylation, sjTREC, and telomere length markers. Cross-validated multiple regression analysis was applied for estimating and validating the age predictive power of various sets of biomarkers within and across different marker types. We found that DNA methylation markers outperformed mRNA, sjTREC, and telomere length in age predictive power. The best performing model included 8 DNA methylation markers derived from 3 CpG islands reaching a high level of accuracy (cross-validated R(2)=0.88, SE±6.97 years, mean absolute deviation 5.07 years). However, our data also suggest that mRNA markers can provide independent age information: a model using a combined set of 5 DNA methylation markers and one mRNA marker could provide similarly high accuracy (cross-validated R(2)=0.86, SE±7.62 years, mean absolute deviation 4.60 years). Overall, our study provides new and confirms previously suggested molecular biomarkers for age estimation from blood. Moreover, our comparative study design revealed that DNA methylation markers are superior for this purpose over other types of molecular biomarkers tested. While the new and some previous findings are highly promising, before molecular age estimation can eventually meet forensic practice, the proposed biomarkers should be tested further in larger sets of blood samples from both healthy and unhealthy individuals, and markers and genotyping methods shall be validated to meet forensic standards.


BioTechniques | 2009

A novel method for sensitive and specific detection of DNA methylation biomarkers based on DNA restriction during PCR cycling

Christoph Kneip; Bernd Schmidt; Michael Fleischhacker; Anke Seegebarth; Jörn Lewin; Nadja Flemming; Stefanie Seemann; Thomas Schlegel; Christian Witt; Volker Liebenberg; Dimo Dietrich

DNA methylation is an important epigenetic mechanism involved in fundamental biological processes such as development, imprinting, and carcino-genesis. For these reasons, DNA methylation represents a valuable source for cancer biomarkers. Methods for the sensitive and specific detection of methylated DNA are a prerequisite for the implementation of DNA biomarkers into clinical routine when early detection based on the analysis of body fluids is desired. Here, a novel technique is presented for the detection of DNA methylation biomarkers, based on real-time PCR of bisulfite-treated template with enzymatic digestion of background DNA during amplification using the heat-stable enzyme Tsp509I. An assay for the lung cancer methylation biomarker BARHL2 was used to show clinical and analytical performance of the method in comparison with methylation-specific PCR technology. Both technologies showed comparable performance when analyzing technical DNA mixtures and bronchial lavage samples from 75 patients suspected of having lung cancer. The results demonstrate that the approach is useful for sensitive and specific detection of a few copies of methylated DNA in samples with a high background of unmethylated DNA, such as in clinical samples from body fluids.


Bioinformatics | 2004

Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates

Jörn Lewin; Armin O. Schmitt; Peter Adorjan; Thomas Hildmann; Christian Piepenbrock


Methods of Molecular Biology | 2009

Quantitative DNA Methylation Profiling on a High-Density Oligonucleotide Microarray

Anne Fassbender; Jörn Lewin; Thomas König; Tamas Rujan; Cécile Pelet; Ralf Lesche; Jürgen Distler; Matthias Schuster


Archive | 2003

Method for quantitative determination of the degree of methylation of cytosines in CpG positions

Christian Piepenbrock; Jörn Lewin; Armin O. Schmitt

Collaboration


Dive into the Jörn Lewin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dimo Dietrich

University Hospital Bonn

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge