Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörn M. Werner is active.

Publication


Featured researches published by Jörn M. Werner.


Cell | 1996

Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders.

Ak Downing; Vroni Knott; Jörn M. Werner; C.M Cardy; Iain D. Campbell; Penny A. Handford

The nuclear magnetic resonance structure of a covalently linked pair of calcium-binding (cb) epidermal growth factor-like (EGF) domains from human fibrillin-1, the protein defective in the Marfan syndrome, is described. The two domains are in a rigid, rod-like arrangement, stabilized by interdomain calcium binding and hydrophobic interactions. We propose a model for the arrangement of fibrillin monomers in microfibrils that reconciles structural and antibody binding data, and we describe a set of disease-causing mutations that provide the first clues to the specificity of cbEFG interactions. The residues involved in stabilizing the domain linkage are highly conserved in fibrillin, fibulin, thrombomodulin, and the low density lipoprotein receptor. We propose that the relative orientation of tandem cbEGF domains in these proteins is similar, but that in others, including Notch, pairs adopt a completely different conformation.


Nature | 2003

Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper.

Ulrich Schwarz-Linek; Jörn M. Werner; Andrew R. Pickford; S. Gurusiddappa; J.H. Kim; Ewa S. Pilka; John A. G. Briggs; T.S. Gough; Magnus Höök; Iain D. Campbell; Jennifer R. Potts

Staphylococcus aureus and Streptococcus pyogenes, two important human pathogens, target host fibronectin (Fn) in their adhesion to and invasion of host cells. Fibronectin-binding proteins (FnBPs), anchored in the bacterial cell wall, have multiple Fn-binding repeats in an unfolded region of the protein. The bacterium-binding site in the amino-terminal domain (1–5F1) of Fn contains five sequential Fn type 1 (F1) modules. Here we show the structure of a streptococcal (S. dysgalactiae) FnBP peptide (B3) in complex with the module pair 1F12F1. This identifies 1F1- and 2F1-binding motifs in B3 that form additional antiparallel β-strands on sequential F1 modules—the first example of a tandem β-zipper. Sequence analyses of larger regions of FnBPs from S. pyogenes and S. aureus reveal a repeating pattern of F1-binding motifs that match the pattern of F1 modules in 1–5F1 of Fn. In the process of Fn-mediated invasion of host cells, therefore, the bacterial proteins seem to exploit the modular structure of Fn by forming extended tandem β-zippers. This work is a vital step forward in explaining the full mechanism of the integrin-dependent FnBP-mediated invasion of host cells.


Nature Structural & Molecular Biology | 2005

A peptide inhibitor of HIV-1 assembly in vitro

Jana Sticht; Michael Humbert; Stuart C. Findlow; Jochen Bodem; Barbara Müller; Ursula Dietrich; Jörn M. Werner; Hans-Georg Kräusslich

Formation of infectious HIV-1 involves assembly of Gag polyproteins into immature particles and subsequent assembly of mature capsids after proteolytic disassembly of the Gag shell. We report a 12-mer peptide, capsid assembly inhibitor (CAI), that binds the capsid (CA) domain of Gag and inhibits assembly of immature- and mature-like capsid particles in vitro. CAI was identified by phage display screening among a group of peptides with similar sequences that bind to a single reactive site in CA. Its binding site was mapped to CA residues 169–191, with an additional contribution from the last helix of CA. This result was confirmed by a separate X-ray structure analysis showing that CAI inserts into a conserved hydrophobic groove and alters the CA dimer interface. The CAI binding site is a new target for antiviral development, and CAI is the first known inhibitor directed against assembly of immature HIV-1.


Structure | 2000

Localization and characterization of the hyaluronan-binding site on the Link module from human TSG-6

Jan D. Kahmann; Ronan O’Brien; Jörn M. Werner; Dick Heinegård; John E. Ladbury; Iain D. Campbell; Anthony J. Day

BACKGROUND The interactions of hyaluronan (HA) with proteins are important in extracellular matrix integrity and leukocyte migration and are usually mediated by a domain termed a Link module. Although the tertiary structure of a Link module has been determined, the molecular basis of HA-protein interactions remains poorly understood. RESULTS Isothermal titration calorimetry was used to characterize the interaction of the Link module from human TSG-6 (Link_TSG6) with HA oligosaccharides of defined length (HA(4)-HA(16)). All oligomers bound (except HA(4)) with K(d) values ranging from 0.2-0.5 microM at 25 degrees C. The reaction is exothermic with a favourable entropy and the thermodynamic profile is similar to those of other glycosaminoglycan-protein interactions. The HA(8) recognition site on Link_TSG6 was localized by comparing nuclear magnetic resonance (NMR) spectra from a 1:1 complex with free protein. Residues perturbed on HA binding include both amino acids that are likely to be directly involved in the interaction (i.e., Lys11, Tyr59, Asn67, Phe70, Lys72 and Tyr78) and those affected by a ligand-induced conformational change in the beta4/beta5 loop. The sidechain of Asn67 becomes more rigid in the complex suggesting that it is in close proximity to the binding site. CONCLUSIONS In TSG-6 a single Link module is sufficient for a high-affinity interaction with HA. The HA-binding surface on Link_TSG6 is found in a similar position to that suggested previously for CD44, indicating that its location might be conserved across the Link module superfamily. Here we find no evidence for the involvement of linear sequence motifs in HA binding.


Journal of Biological Chemistry | 2003

Solution Structure and Dynamics of a Calcium Binding Epidermal Growth Factor-like Domain Pair from the Neonatal Region of Human Fibrillin-1.

Rachel S. Smallridge; Pat Whiteman; Jörn M. Werner; Iain D. Campbell; Penny A. Handford; Ak Downing

Fibrillin-1 is a mosaic protein mainly composed of 43 calcium binding epidermal growth factor-like (cbEGF) domains arranged as multiple, tandem repeats. Mutations within the fibrillin-1 gene cause Marfan syndrome (MFS), a heritable disease of connective tissue. More than 60% of MFS-causing mutations identified are localized to cbEGFs, emphasizing that the native properties of these domains are critical for fibrillin-1 function. The cbEGF12–13 domain pair is within the longest run of cbEGFs, and many mutations that cluster in this region are associated with severe, neonatal MFS. The NMR solution structure of Ca2+-loaded cbEGF12–13 exhibits a near-linear, rod-like arrangement of domains. This observation supports the hypothesis that all fibrillin-1 (cb)EGF-cbEGF pairs, characterized by a single interdomain linker residue, possess this rod-like structure. The domain arrangement of cbEGF12–13 is stabilized by additional interdomain packing interactions to those observed for cbEGF32–33, which may help to explain the previously reported higher calcium binding affinity of cbEGF13. Based on this structure, a model of cbEGF11–15 that encompasses all known neonatal MFS missense mutations has highlighted a potential binding region. Backbone dynamics data confirm the extended structure of cbEGF12–13 and lend support to the hypothesis that a correlation exists between backbone flexibility and cbEGF domain calcium affinity. These results provide important insight into the potential consequences of MFS-associated mutations for the assembly and biomechanical properties of connective tissue microfibrils.


Journal of Biological Chemistry | 2004

Interdomain Tilt Angle Determines Integrin-dependent Function of the Ninth and Tenth FIII Domains of Human Fibronectin

Harri Altroff; Robin Schlinkert; Christopher F. van der Walle; Andrea Bernini; Iain D. Campbell; Jörn M. Werner; Helen J. Mardon

Integrins are an important family of signaling receptors that mediate diverse cellular processes. The binding of the abundant extracellular matrix ligand fibronectin to integrins α5β1 and αvβ3 is known to depend upon the Arg-Gly-Asp (RGD) motif on the tenth fibronectin FIII domain. The adjacent ninth FIII domain provides a synergistic effect on RGD-mediated integrin α5β1 binding and downstream function. The precise molecular basis of this synergy remains elusive. Here we have dissected further the function of FIII9 in integrin binding by analyzing the biological activity of the FIII9-10 interdomain interface variants and by determining their structural and dynamic properties in solution. We demonstrate that the contribution of FIII9 to both α5β1 and αvβ3 binding and downstream function critically depends upon the interdomain tilt between the FIII9 and FIII10 domains. Our data suggest that modulation of integrin binding by FIII9 may arise in part from its steric properties that determine accessibility of the RGD motif. These findings have wider implications for mechanisms of integrin-ligand binding in the physiological context.


Structure | 2001

Solution Structure of the LDL Receptor EGF-AB Pair: A Paradigm for the Assembly of Tandem Calcium Binding EGF Domains

Saurabh Saha; Jonathan Boyd; Jörn M. Werner; Vroni Knott; Penny A. Handford; Iain D. Campbell; A. Kristina Downing

BACKGROUND From the observed structure and sequence of a pair of calcium binding (cb) epidermal growth factor-like (EGF) domains from human fibrillin-1, we proposed that many tandem cbEGF domains adopt a conserved relative conformation. The low-density lipoprotein receptor (LDLR), which is functionally unrelated to fibrillin-1, contains a single pair of EGF domains that was chosen for study in the validation of this hypothesis. The LDLR is the protein that is defective in familial hypercholesterolaemia, a common genetic disorder that predisposes individuals to cardiovascular complications and premature death. RESULTS Here, we present the solution structure of the first two EGF domains from the LDL receptor, determined using conventional NMR restraints and residual dipolar couplings. The cbEGF domains have an elongated, rod-like arrangement, as predicted. The new structure allows a detailed assessment of the consequences of mutations associated with familial hypercholesterolaemia to be made. CONCLUSIONS The validation of the conserved arrangement of EGF domains in functionally distinct proteins has important implications for structural genomics, since multiple tandem cbEGF pairs have been identified in many essential proteins that are implicated in human disease. Our results provide the means to use homology modeling to probe structure-function relationships in this diverse family of proteins and may hold the potential for the design of novel diagnostics and therapies in the future.


Biochemical Journal | 2012

Insights into the regulation of eukaryotic elongation factor 2 kinase and the interplay between its domains.

Craig R. Pigott; Halina Mikolajek; Claire E. Moore; Stephen J. Finn; Curtis W. Phippen; Jörn M. Werner; Christopher G. Proud

eEF2K (eukaryotic elongation factor 2 kinase) is a Ca2+/CaM (calmodulin)-dependent protein kinase which regulates the translation elongation machinery. eEF2K belongs to the small group of so-called ‘α-kinases’ which are distinct from the main eukaryotic protein kinase superfamily. In addition to the α-kinase catalytic domain, other domains have been identified in eEF2K: a CaM-binding region, N-terminal to the kinase domain; a C-terminal region containing several predicted α-helices (resembling SEL1 domains); and a probably rather unstructured ‘linker’ region connecting them. In the present paper, we demonstrate: (i) that several highly conserved residues, implicated in binding ATP or metal ions, are critical for eEF2K activity; (ii) that Ca2+/CaM enhance the ability of eEF2K to bind to ATP, providing the first insight into the allosteric control of eEF2K; (iii) that the CaM-binding/α-kinase domain of eEF2K itself possesses autokinase activity, but is unable to phosphorylate substrates in trans; (iv) that phosphorylation of these substrates requires the SEL1-like domains of eEF2K; and (v) that highly conserved residues in the C-terminal tip of eEF2K are essential for the phosphorylation of eEF2, but not a peptide substrate. On the basis of these findings, we propose a model for the functional organization and control of eEF2K.


Structure | 2002

SH3-SH2 Domain Orientation in Src Kinases: NMR Studies of Fyn

Tobias S. Ulmer; Jörn M. Werner; Iain D. Campbell

The regulatory domains of Src family kinases SH3 and SH2 suppress Src activity when bound to the catalytic domain. Here, the isolated SH3-SH2 fragment from the Src family member Fyn (FynSH32) is studied by NMR. The properties of this fragment are expected to be similar to the domains in the active state, where they are dissociated from the catalytic domain. Crosscommunication between SH3 and SH2 of FynSH32, measured by chemical shift perturbation, was found to be small. Diffusion and alignment anisotropy measurements showed that SH3 and SH2 of peptide-bound FynSH32 are significantly coupled but still exhibit some interdomain flexibility. The observed average domain orientation indicates that a large SH3-SH2 domain closure is required to reach the inactive state. The implications of these results for Src regulation are discussed.


Molecular and Cellular Biology | 2015

Elongation factor 2 kinase is regulated by proline hydroxylation and protects cells during hypoxia

Claire E. Moore; Halina Mikolajek; Sergio Regufe da Mota; Xuemin Wang; Justin W. Kenney; Jörn M. Werner; Christopher G. Proud

ABSTRACT Protein synthesis, especially translation elongation, requires large amounts of energy, which is often generated by oxidative metabolism. Elongation is controlled by phosphorylation of eukaryotic elongation factor 2 (eEF2), which inhibits its activity and is catalyzed by eEF2 kinase (eEF2K), a calcium/calmodulin-dependent α-kinase. Hypoxia causes the activation of eEF2K and induces eEF2 phosphorylation independently of previously known inputs into eEF2K. Here, we show that eEF2K is subject to hydroxylation on proline-98. Proline hydroxylation is catalyzed by proline hydroxylases, oxygen-dependent enzymes which are inactivated during hypoxia. Pharmacological inhibition of proline hydroxylases also stimulates eEF2 phosphorylation. Pro98 lies in a universally conserved linker between the calmodulin-binding and catalytic domains of eEF2K. Its hydroxylation partially impairs the binding of calmodulin to eEF2K and markedly limits the calmodulin-stimulated activity of eEF2K. Neuronal cells depend on oxygen, and eEF2K helps to protect them from hypoxia. eEF2K is the first example of a protein directly involved in a major energy-consuming process to be regulated by proline hydroxylation. Since eEF2K is cytoprotective during hypoxia and other conditions of nutrient insufficiency, it may be a valuable target for therapy of poorly vascularized solid tumors.

Collaboration


Dive into the Jörn M. Werner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Elliott

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Alistair Bailey

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge